Skip to main content

Adaptive Approximation with Walsh-similar Functions

  • Conference paper
  • 331 Accesses

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 132))

Abstract

The classical orthonormal system of Walsh functions is generalized in a new direction, called Walsh-similar functions, different from the already well-known ones [5], [7], [9], [14], [21] and from the Generalized Walsh-like functions [10], [11]. The definition of the Walsh-similar functions involves real parameters and allows adaptation of the orthonormal system to a particular function by an appropriate choice of these parameters. A Walsh-similar function may have any given fractal dimension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnsley, M. F. (1988), Fractals Everywhere, Boston.

    Google Scholar 

  2. Barnsley, M. F. and L. P. Hurd (1993), Fractal Image Compression, AK Peters, Ltd. Wellesley, Massachusetts.

    MATH  Google Scholar 

  3. Butzer, P. L., and V. Engels (1989), Theory and Applications of Gibbs Derivatives, Matematicki Institut, Beograd.

    Google Scholar 

  4. Brudnyi, Yu. A. (1994): Adaptive approximation of functions with singularities. Trudy Moskov. Mat. Obshch., 55, 149–242.

    MathSciNet  Google Scholar 

  5. Chrestenson, H. E. (1955): A Class of Generalized Walsh Functions. Pacific J. Math., 5, 17–31.

    Article  MATH  MathSciNet  Google Scholar 

  6. Fine, N. J. (1949): On the Walsh Functions. Trans. Am. Math. Soc., 65, 373–414.

    Article  Google Scholar 

  7. Fine, N. J. (1950): The Generalized Walsh Functions. Trans. Am. Math. Soc, 69, 66–77.

    Article  MATH  Google Scholar 

  8. A. N. Kolmogorov (1936), Über die beste annaherung von functionen einer functionsklasse, Math. Ann., 37, 107–111.

    Article  MATH  MathSciNet  Google Scholar 

  9. LéVY, P. (1944): Sur une généralisation des fonctions orthogonales de M. Rademacher. Comm. Math. Helv., 16, 146–152.

    Article  MATH  Google Scholar 

  10. Larsen, R. D. and W. R. Madych (1976): Walsh-like Expansions and Hadamard Matrices. IEEE Trans. Acoust. Speech Signal Processing, ASSP-24(1), 71–75.

    Article  MathSciNet  Google Scholar 

  11. Madych, W. R. (1978): Generalized Walsh-like Expansions. IEEE Midwest Symp. Cire. Syst., 21st, 378–382.

    Google Scholar 

  12. Meyer, Y. (1993), Wavelets, SIAM, Philadelphia.

    Google Scholar 

  13. Paley, R. E. (1932): A Remarkable Series of Orthogonal Functions. Proc. London Math. Soc, 34, 241–279.

    Article  MathSciNet  Google Scholar 

  14. Redinbo, G. R. (1971): A Note on the Construction of Generalized Walsh Functions. SIAM J. Math. Anal, 2(3), 166–167.

    Article  MATH  MathSciNet  Google Scholar 

  15. Bl. Sendov (1997), Multiresolution analysis of functions defined on the dyadic topological group. East J. on Approx. 3, n. 2, 225–239.

    MATH  Google Scholar 

  16. Bl. Sendov (1998), Adaptive Multiresolution Analysis on the Dyadic Topological Group. J. of Approx. Theory (to appear).

    Google Scholar 

  17. Sunouchi, G. (1964): Strong Summability of Walsh Fourier Series. Tôhoku Math. J., 16, 228–237.

    Google Scholar 

  18. Walsh, J. L. (1923): A Closed Set of Normal Orthogonal Functions. Amer. J. Math., 55, 5–24.

    Article  Google Scholar 

  19. Watari, C. (1956): A Generalization of Haar Functions. Tôhoku Math. J., 8, 286–290.

    Article  MATH  MathSciNet  Google Scholar 

  20. Watari, C. (1957): On Generalized Walsh Fourier Series, I. Proc. Japan Acad., 33, 435–438.

    Article  MATH  MathSciNet  Google Scholar 

  21. Watari, C. (1958): On Generalized Walsh Fourier Series. Tôhoku Math. J., 10(2), 211–241.

    Article  MATH  MathSciNet  Google Scholar 

  22. Yano, S. (1951): On Walsh-Fourier Series. Tôhoku Math. J., 3, 223–242.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Sendov, B. (1999). Adaptive Approximation with Walsh-similar Functions. In: Müller, M.W., Buhmann, M.D., Mache, D.H., Felten, M. (eds) New Developments in Approximation Theory. ISNM International Series of Numerical Mathematics, vol 132. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8696-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8696-3_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9733-4

  • Online ISBN: 978-3-0348-8696-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics