Skip to main content

Noncooperative Games with Elliptic Systems

  • Conference paper

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 133))

Abstract

Noncooperative games with “slightly” nonlinear systems and “sufficiently” uniformly convex individual cost functionals may admit a relaxation having a globally convex structure, which guarantees existence of its Nash equilibria as well as existence of approximate Nash equilibria (in a suitable sense) for the original game. The relaxation is made by a continuous extension on a suitable convex (local) compactification. This will be illustrated by semilinear elliptic systems. The regularity will be employed, too.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balder, E.J.: On a Useful Compactification for Optimal Control Problems. J. Math. Anal. Appl. 72 (1979), 391–398.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bensoussan, A.: Points de Nash dans le cas de fonctionnelles quadratiques et jeux différentiels linéaires a n personnes. SIAM J. Control 12 (1974), 460–499.

    Article  MathSciNet  MATH  Google Scholar 

  3. Chawla, S.: A minmax problem for parabolic systems with competitive interactions. IMA Preprint Series No. 1448, Uni. Minnesota, Minneapolis, 1996.

    Google Scholar 

  4. Díaz, J.I., Lions, J.L.: On the approximate controllability of Stackelberg-Nash strategies. In: Proc. 2nd Diderot forum: Math. & Environment. Springer, 1999 (to appear).

    Google Scholar 

  5. Gabasov, R., Kirillova, F.: Qualitative Theory of Optimal Processes. Nauka, Moscow, 1971.

    Google Scholar 

  6. Lenhart, S., Protopopescu, V., Stojanovic, S.: A minimax problem for semilinear nonlocal competitive systems. Appl. Math. Optim. 28 (1993), 113–132.

    Article  MathSciNet  MATH  Google Scholar 

  7. Mordukhovich, B.S., Zhang, K.: Minimax control of parabolic systems with Dirichlet boundary conditions and state constraits. Appl. Math. Optim. 36 (1997), 323–360.

    Article  MathSciNet  MATH  Google Scholar 

  8. Nash, J.: Non-cooperative games. Annals of Math. 54 (1951), 286–295.

    Article  MathSciNet  MATH  Google Scholar 

  9. Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967.

    Google Scholar 

  10. Nikaidô, H., Isoda, K.: Note on non-cooperative equilibria. Pacific J. Math. 5 (1955), 807–815.

    Article  MathSciNet  Google Scholar 

  11. Nowak, A.S.: Correlated relaxed equilibria in nonzero-sum linear differential games. J. Math. Anal. Appl. 163 (1992), 104–112.

    Article  MathSciNet  MATH  Google Scholar 

  12. Patrone, F.: Well-posedness for Nash equilibria and related topics. In: Recent Developments in Well-Posed Variational Problems. (Eds.R. Lucchetti et al.) Kluwer, 1995, pp.211–227.

    Google Scholar 

  13. Roubíček, T.: Relaxation in Optimization Theory and Variational Calculus. W. de Gruyter, Berlin, 1997.

    Book  MATH  Google Scholar 

  14. Roubíček, T.: On noncooperative nonlinear differential games. Kybemetika (submit).

    Google Scholar 

  15. Roubíček, T., Schmidt, W.H.: Existence of solutions to certain nonconvex optimal control problems governed by nonlinear integral equations. Optimization 42 (1997), 91–109.

    Article  MathSciNet  MATH  Google Scholar 

  16. Roxin, E.O.: Differential games with partial differential equations. In: Diff. Games and Appl. (Eds. P. Hagedorn et al.) Lecture Notes on Control Inf. Sci. 3, Springer, Berlin, 1997, pp. 186–204.

    Google Scholar 

  17. Szpiro, A.A., Protopescu, V.: Parabolic systems with competitive interactions and control on initial conditions. Appl. Math. Comp. 59 (1993), 215–245.

    Article  MATH  Google Scholar 

  18. Warga, J.: Optimal Control of Differential and Functional Equations. Academic Press, New York, 1972.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Roubíček, T. (1999). Noncooperative Games with Elliptic Systems. In: Hoffmann, KH., Leugering, G., Tröltzsch, F., Caesar, S. (eds) Optimal Control of Partial Differential Equations. ISNM International Series of Numerical Mathematics, vol 133. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8691-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8691-8_21

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9731-0

  • Online ISBN: 978-3-0348-8691-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics