Skip to main content

The role of Lagrangian chaos in the creation of multifractal measures

  • Conference paper
Fundamental Problematic Issues in Turbulence

Part of the book series: Trends in Mathematics ((TM))

Abstract

In this paper we review and discuss the role of Lagrangian chaos in creating multifractal measures associated with spatial intermittency. In particular, we consider (1) passive scalars, (2) the kinematic magnetic dynamo problem, and (3) the stability of high Reynolds number fluid flows. In all cases we take the underlying flow to be smooth in the sense that it has no fractal or power law properties of its own (its wavenumber power spectrum is peaked at some low value and decays with increasing wavenumber much faster than a power law, e.g., exponentially). Nevertheless, chaos in the Lagrangian dynamics of such flows can lead to fractals and power law wavenumber spectra for relevant physical quantities, such as the distribution of the passive scalar (problem (1)), the magnetic field (problem (2)), and the vorticity field (problem (3)). A key concept used in the quantitative treatment of these problems is that of finite time Lyapunov exponents. This paper will illustrate how consideration of finite time Lyapunov exponents can be used to quantitatively analyze these situations. Thus we provide a connection between quantities of physical interest and ergodic dynamical characterization of the underlying chaos of the flow. In the case of problem (3), we also comment on implications for high Reynolds number fluid turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Varosi, T. M. Antonsen, and E. Ott, Phys. Fluids A 3, 1017 (1991); E. Ott and T. M. Antonsen, Phys. Rev. Lett. 61, 2839 (1988).

    Article  MathSciNet  Google Scholar 

  2. L. Yu, E. Ott and Q. Chen, Phys. Rev. Lett. 65, 2935 (1990); Physica D 53, 102 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  3. J. C. Sommerer and E. Ott, Science 259, 335 (1993); J. C. Sommerer, Physica D 76, 85 (1994).

    Article  Google Scholar 

  4. T. M. Antonsen, Z. Fan, and E. Ott, Phys. Rev. Lett. 75, 1751 (1995).

    Article  Google Scholar 

  5. T. M. Antonsen, A. Namenson, E. Ott and J. C. Sommerer, Phys. Rev. Lett. 75, 3438 (1995).

    Article  Google Scholar 

  6. C. Reyl, T. M. Antonsen, and E. Ott, Phys. Rev. Lett. 76, 2270 (1996).

    Article  Google Scholar 

  7. M. A. F. Sanjuán, J. Kennedy, E. Ott, and J. A. Yorke, Phys. Rev. Lett. 78, 1892 (1996).

    Article  Google Scholar 

  8. P. Grassberger and I. Procaccia, Physica D 9, 189 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, 1994), pp. 78–85.

    Google Scholar 

  10. J. D. Farmer, E. Ott, and J. A. Yorke, Physica D 7, 153 (1983).

    Article  MathSciNet  Google Scholar 

  11. Ref. 9, Sec. 9.4.

    Google Scholar 

  12. R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer-Verlag, New York, 1985).

    Book  MATH  Google Scholar 

  13. R. Ramshakar and J. Gollub, Phys. Fluids A 3, 1344 (1991).

    Article  Google Scholar 

  14. F. Ladrappier and L. S. Young, Comm. Math. Phys. 117, 529 (1988).

    Article  MathSciNet  Google Scholar 

  15. C. Jung and E. Ziemniak, J. Phys. A 25, 3929 (1992); C. Jung, T. TĂ©l and E. Ziemniak, Chaos 3, 555 (1993); A. PĂ©ntek, Z. Toroczkai, T. TĂ©l, C. Grebogi, and J. A. Yorke, Phys. Rev. E 51, 4076 (1995).

    Article  MATH  Google Scholar 

  16. J. Jacobs, E. Ott, T. M. Antonsen, and J. A. Yorke, Physica D 110, 1 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. C. Sommerer, H.-C. Ku, and H. E. Gilreath, Phys. Rev. Lett. 77, 5055 (1966).

    Article  Google Scholar 

  18. Ref. 9, Chapter 5, and references therein; see also E. Ott and T. TĂ©l,Chaos 3, 417 (1993).

    Google Scholar 

  19. S. I. Vainshtein and Ya. B. Zeldovich, Sov. Phys. Usp. 15, 159 (1972).

    Article  Google Scholar 

  20. V. I. Arnold, Ya. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokolov, Sov. Phys. JETP 54, 1083 (1981).

    Google Scholar 

  21. B. J. Bayly and S. Childress, Geophys. Astrophys. Fluid Dyn. 44, 211 (1988); ibid. 49, 23 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  22. J. M. Finn and E. Ott, Phys. Fluids 31, 2992 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  23. B. J. Bayly and S. Childress, Geophys. Astrophys. Fluid Dyn. 44, 211 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Finn, J. Hanson, I. Kan, and E. Ott, Phys. Rev. Lett. 62, 2965 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  25. M. M. Vishik, Geophys. Astrophys. Fluid Dyn. 48, 151 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Ott and T. M. Antonsen, Phys. Rev. A 39, 3660 (1989).

    Article  Google Scholar 

  27. J. Finn and E. Ott, Phys. Fluids B 2, 916 (1990).

    Article  MathSciNet  Google Scholar 

  28. J. Finn, J. Hanson, I. Kan, and E. Ott, Phys. Fluids B 3, 1250 (1991).

    Article  MathSciNet  Google Scholar 

  29. D. J. Galloway and M. R. E. Proctor, Nature 356, 691 (1992).

    Article  Google Scholar 

  30. A. D. Gilbert and B. J. Bayly, J. Fluid Mech. 241, 199 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. D. Gilbert, Philos. Trans. R. Soc. London Ser. A 339, 627 (1992).

    Article  Google Scholar 

  32. E. Ott, Y. Du, K. R. Sreenivasan, A. Juneja, and A. K. Suri, Phys. Rev. Lett. 69, 2654 (1992).

    Article  Google Scholar 

  33. Y. Du and E. Ott, Physica D 67, 387 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. Du and E. Ott, J. Fluid Mech. 257, 265 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  35. Y.-T. Lau and J. Finn, Phys. Fluids B 5, 365 (1993).

    Article  MathSciNet  Google Scholar 

  36. A. Soward, Geophys. Astrophys. Fluid Dyn. 73, 179 (1993).

    Article  MathSciNet  Google Scholar 

  37. A. D. Gilbert, N. F. Otani, and S. Childress, in Theory of Solar and Planetary Dynamics, edited by M. R. E. Proctor, P. C. Matthews, and A. M. Rucklidge (Cambridge University Press, New York, 1993), pp. 129–136.

    Google Scholar 

  38. N. F. Otani, J. Fluid Mech. 253, 327 (1993).

    Article  MATH  Google Scholar 

  39. Y. Ponty, A. Pouquet, and P. L. Sulem, Geophys. Astrophys. Fluid Dyn. 79, 239 (1995).

    Article  Google Scholar 

  40. F. Cattaneo, E. Kim, M. Proctor, and L. Tao, Phys. Rev. Lett. 75, 1522 (1995).

    Article  Google Scholar 

  41. I. Klapper and L. S. Young, Comm. Math. Phys. 173, 623 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  42. C. Reyl, E. Ott, and T.M. Antonsen, Phys. Plasmas 3, 2564 (1996).

    Article  Google Scholar 

  43. D. Galloway and U. Frisch, Geophys. Astrophys. Fluid Dyn. 36, 53 (1986); V. I. Arnold and E. I. Korkiina, Vestn. Mosk. Univ. Mat. Mekh. 3, 43 (1983) (in Russian).

    Article  MathSciNet  Google Scholar 

  44. E.g., see Ref. 9, p. 143.

    Google Scholar 

  45. C. Reyl, T. M. Antonsen, and E. Ott, Phys. Rev. Lett. 78, 2559 (1997); Physica D, to be published (1998).

    Article  Google Scholar 

  46. R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, J. Phys. A.17, 3521 (1984).

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Ott, E. (1999). The role of Lagrangian chaos in the creation of multifractal measures. In: Gyr, A., Kinzelbach, W., Tsinober, A. (eds) Fundamental Problematic Issues in Turbulence. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8689-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8689-5_39

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9730-3

  • Online ISBN: 978-3-0348-8689-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics