Skip to main content

On the statistics of small-scale turbulence and its universality

  • Conference paper
Book cover Fundamental Problematic Issues in Turbulence

Part of the book series: Trends in Mathematics ((TM))

  • 521 Accesses

Abstract

We present a method of how to estimate from experimental data of a turbulent velocity field the drift and the diffusion coefficient of a Fokker-Planck equation. It is shown that solutions of this Fokker-Planck equation reproduce with high accuracy the statistics of velocity increments in the inertial range. Using solutions with different initial conditions at large scales we show that they converge. This can be interpreted as a signature of the universality of small scale turbulence in the limit of large inertial ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, (MIT Press, Cambridge 1975).

    Google Scholar 

  2. U. Frisch, Turbulence (Cambridge 1995).

    Google Scholar 

  3. R. Benzi, S. Ciliberto, C. Baudet, G.R. Chavarria, Physica D 80, 385 (1995).

    Google Scholar 

  4. A. Arneodo, et. al. Europhys. Lett. 34, 411 (1996).

    Article  Google Scholar 

  5. K.R. Sreenivasan, R.A. Antonia, Annu. Rev. Fluid Mech. 29, 435 (1997).

    Article  MathSciNet  Google Scholar 

  6. R. Benzi, L. Biferale, G. Paladin, A. Vulpiani, M. Vergassola, Phys. Rev. 67, 2299 (1991); P. Kailasnath, K.R. Sreenivasan, G. Stolovitzky, Phys. Rev. 68, 2767 (1992).

    Google Scholar 

  7. B. Castaing, Y. Gagne, E. Hopfinger, Physica D 46, 177 (1990).

    Google Scholar 

  8. H. Tennekes, J.C. Wyngaard, J. Fluid Mech. 55, 93 (1972); F. Anselmat, Y. Gagne, E.J. Hopfinger, R.A. Antonia, J. Fluid. Mech 149,63 (1984); J. Peinke, B. Castaing, B. Chabaud, F. Chilla, B. Hebral, A. Naert, in Fractals in the Natural and Applied Sciences, edt.: M.M. Novak (North Holland, Amsterdam 1994) p.295.

    Article  Google Scholar 

  9. R.A. Antonia, B.R. Satyaprakash, A.K.M.F. Hussain, J. Fluid Mech. 119, 55 (1982); B. Castaing, Y. Gagne, E.J. Hopfinger, A new View of Developed Turbulence, in New Approaches and Concepts in Turbulence, edts. Th. Dracos and A. Tsinober (Birkhäuser, Basel 1993) see also discussion p. 47-60 therein; B. Castaing, Y. Gagne, M. Marchand, Physica D 68, 387 (1993); B. Chabaud, A. Naert, J. Peinke, F. Chilla, B. Castaing, B. Hebral, Phys. Rev. Lett. 73 (1994) 3227.

    Article  Google Scholar 

  10. R. Friedrich, J. Peinke, Phys. Rev. Lett. 78, 863 (1997); A. Naert, R. Friedrich, J. Peinke, Phys. Rev. E 56, 6719 (1997).

    Article  Google Scholar 

  11. R. Friedrich, J. Peinke, Physica D 102, 147 (1997).

    Google Scholar 

  12. R. Friedrich, J. Zeller, J. Peinke, Europhys. Lett. 41, 143 (1998).

    Article  Google Scholar 

  13. It has recently been shown that in an analogous way it is possible to analyse dynamical systems, and to extract the Langevin equation directly from a given data set; S. Siegert, R. Friedrich, J. Peinke, Phys. Lett. A 243, 275 (1998).

    Google Scholar 

  14. N. Rajartnan, Turbulent Jets (Elsevier, Amsterdam 1976); Ch. Renner, Diplomarbeit (Bayreuth 1997).

    Google Scholar 

  15. B. Biimel and H.E. Fiedler (Berlin) priv. communication.

    Google Scholar 

  16. D. Aronson, L. Lofdahl, Phys. Fluids A5, 1433 (1993).

    Google Scholar 

  17. J. Peinke, R. Friedrich, F. Chilla, B. Chabaud, and A. Naert, Z. Phys. B 101, 157 (1996).

    Article  Google Scholar 

  18. H. Risken, The Fokker-Planck Equation, (Springer-Verlag Berlin, 1984); P. Hänggi and H. Thomas, Physics Reports 88, 207 (1982).

    Google Scholar 

  19. J. Peinke, R. Friedrich, A. Naert, Z. Naturforsch. 52a, 588 (1997).

    Google Scholar 

  20. The Fokker-Planck equations for P even and P odd have the same form as (5), only if the coefficient δ = 0, this may clear up the question of the sense of evaluating moments of the absolute values of v i, see for example footnote on page 446 in [5].

    Google Scholar 

  21. A.M. Oboukhov, J. Fluid Mech. 13, 77 (1962); A.N. Kolmogorov, J. Fluid Mech. 13, 82 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Chilla et. al. to be published

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Renner, C., Reisner, B., Lück, S., Peinke, J., Friedrich, R. (1999). On the statistics of small-scale turbulence and its universality. In: Gyr, A., Kinzelbach, W., Tsinober, A. (eds) Fundamental Problematic Issues in Turbulence. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8689-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8689-5_36

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9730-3

  • Online ISBN: 978-3-0348-8689-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics