Skip to main content

Pressure fluctuations in a turbulent channel

  • Conference paper
Fundamental Problematic Issues in Turbulence

Part of the book series: Trends in Mathematics ((TM))

  • 525 Accesses

Abstract

In a turbulent flow, coherent vortices are generally characterized by a high vorticity modulus and a low pressure. It was shown by Métais and Lesieur [15] that the pressure probability distribution function (pdf) was skewed in isotropic turbulence, with an exponential tail in the lows and a Gaussian one in the highs. On the other hand, the pdf of any vorticity component is symmetric, with exponential-like tails. Analogous results were found in Direct Numerical Simulation (DNS) of a mixing layer [2], and, for the pressure, in experiments of turbulence between two counter-rotating disks [6] and in a jet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Cadot, D. Douady and Y. Couder, Characterization of the low-pressure filaments in a three-dimensional turbulent shear flow. Phys. Fluids 7(3), (1995) pp. 630–646.

    Article  Google Scholar 

  2. P. Comte, M. Lesieur and E. Lamballais, Large and small-scale stirring of vorticity and a passive scalar in a 3D temporal mixing layer. Phys. Fluids A 4, (1992) pp. 2761–2778.

    Article  Google Scholar 

  3. G. Comte-Bellot, Ecoulement turbulent entre deux parois parallèles. Publications scientifiques et techniques du ministère de l’air 419, Documentation scientifique et technique de l’armement (1965)

    Google Scholar 

  4. F. Ducros, P. Comte and M. Lesieur, Large-eddy simulation of transition to turbulence in a boundary-layer developing spatially over a flat plate. J. Fluid Mech. 326, (1996) pp. 1–36.

    Article  MATH  Google Scholar 

  5. F. Durst and H. Kikura, Low Reynolds number effects on a fully developedturbulent channel flow. In Proc. 10th Symp. on Turbulent Shear Flows (1995) P2–25.

    Google Scholar 

  6. S. Fauve, C. Laroche and B. Castaing, Pressure fluctuations in swirling turbulent flows. J. Phys II 3, (1993) pp. 271–278.

    Article  Google Scholar 

  7. J. Kim, On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, (1989) pp. 421–451

    Article  Google Scholar 

  8. J. Kim, P. Moin and R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, (1987) pp. 133–166

    Article  MATH  Google Scholar 

  9. S.J. Kline, W.C. Reynolds, F.A. Schraub and P.W. Runstadler, The structure of turbulent boundary layers. J. Fluid Mech. 95, (1967) pp. 741–773.

    Article  Google Scholar 

  10. A. Kuroda, Direct-numerical simulation of Couette-Poiseuille flows. PhD thesis, University of Tokyo, (1990).

    Google Scholar 

  11. R. Labbé, J.F. Pinton and S. Fauve, Power fluctuations in turbulent swirling flows. J. Phys II France 6, (1996), pp. 1099–1110.

    Article  Google Scholar 

  12. E. Lamballais, Simulations numériques de la turbulence dans un canal plan tournant. PhD thesis, Institut National Polytechnique de Grenoble, (1996).

    Google Scholar 

  13. E. Lamballais, M. Lesieur and O. Métais, “Probability distribution functions and coherent structures in a turbulent channel” Physical Review E, 56 (6), pp. 6761–6766.

    Google Scholar 

  14. E. Lamballais, O. Métais and M. Lesieur, Influence of a spanwise rotation upon the coherent-structure dynamics in a turbulent channel. In Direct and Large-Eddy Simulation II, J.P. Chollet, L. Kleiser and P.R. Voke eds., Kluwer Academic Publishers, (1997) pp. 225–236.

    Google Scholar 

  15. O. Métais and M. Lesieur, Spectral large-eddy simulations of isotropic and stably-stratified turbulence. J. Fluid Mech. 239, (1992) pp. 157–194.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Moin and J. Kim, Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, (1982) pp. 341–377

    Article  MATH  Google Scholar 

  17. P. Moin and J. Kim, The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations. J. Fluid Mech. 155, (1985) pp. 441–464

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this paper

Cite this paper

Métais, O., Lamballais, E., Lesieur, M. (1999). Pressure fluctuations in a turbulent channel. In: Gyr, A., Kinzelbach, W., Tsinober, A. (eds) Fundamental Problematic Issues in Turbulence. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8689-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8689-5_33

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9730-3

  • Online ISBN: 978-3-0348-8689-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics