Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The loss of aggrecan from cartilage that occurs during normal turnover and joint pathology involves the proteolytic actions of matrix metalloproteinases (MMPs) and “aggrecanase”. This definitive statement is tempered, however, by not knowing precisely which members of the MMP family are involved, and not knowing the molecular identity of aggrecanase. Since its discovery in 1991, over 120 papers and conference reports have described the catalytic actions and expression of the putative aggrecanase in animal models, in vitro systems and human disease. Modulation of aggrecanase expression by cytokines and retinoate has been examined and studies exploring the relationship between aggrecanase and MMP activities in cartilage are ongoing. Many of these studies have been facilitated by the development of novel antibodies and new substrates. This chapter will review the relatively short history of aggrecanase and its role in cartilage proteoglycan degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hascall VC, Heinegård D (1974) Aggregation of cartilage proteoglycans: oligosaccha-ride competitors of the proteoglycan-hyaluronic acid interaction. J Biol Chem 249: 4242–4249

    PubMed  CAS  Google Scholar 

  2. Hardingham T, Muir H (1973) Binding of oligosaccharides of hyaluronic acid to proteoglycan. Biochem J 135: 905–908

    PubMed  CAS  Google Scholar 

  3. Hardingham TE (1979) The role of link-protein in the structure of cartilage proteoglycan aggregates. Biochem J 177: 237–247

    PubMed  CAS  Google Scholar 

  4. Faltz LL, Caputo CB, Kimura JH, Schrode J, Hascall VC (1979) Structure of the complex between hyaluronic acid, the hyaluronic acid binding region, and the link protein of proteoglycan aggregates from the Swarm rat chondrosarcoma. J Biol Chem 254: 1381–1387

    PubMed  CAS  Google Scholar 

  5. Mörgelin M, Paulsson M, Hardingham TE, Heinegård D, Engel J (1988) Cartilage proteoglycans. Assembly with hyaluronate and link protein as studied by electron microscopy. Biochem J 253: 175–185

    PubMed  Google Scholar 

  6. Ratcliffe A, Tyler JA, Hardingham TE (1986) Articular cartilage cultured with interleukin 1. Increased release of link protein, hyaluronate-binding region and other proteoglycan fragments. Biochem J 238: 571–580

    PubMed  CAS  Google Scholar 

  7. Campbell MA, Handley CJ, D’Souza S (1989) Turnover of proteoglycans in articularcartilage cultures. Characterization of proteoglycans released into the medium. Biochem J 259: 21–25

    PubMed  CAS  Google Scholar 

  8. Campbell IK, Roughley PJ, Mort JS (1986) The action of human articular-cartilage metalloproteinase on proteoglycan and link protein. Similarities between products of degradation in situ and in vitro. Biochem J 237: 117–122

    PubMed  CAS  Google Scholar 

  9. Witter J, Roughley PJ, Webber C, Roberts N, Keystone E, Poole AR (1987) The immunologic detection and characterization of cartilage proteoglycan degradation products in synovial fluids of patients with arthritis. Arthritis Rheum 30: 519–529

    Article  PubMed  CAS  Google Scholar 

  10. Campbell MA, Handley CJ (1987) The effect of retinoic acid on proteoglycan turnover in bovine articular cartilage cultures. Archiv Biochem Biophys 258: 143–155

    Article  CAS  Google Scholar 

  11. Wiedemann H, Paulsson M, Timpl R, Engel J, Heinegård D (1984) Domain structure of cartilage proteoglycans revealed by rotary shadowing of intact and fragmented molecules. Biochem J 224: 331–333

    PubMed  CAS  Google Scholar 

  12. Paulsson M, Mörgelin M, Wiedemann H, Beardmore-Gray M, Dunham DG, Hardingham TE, Heinegård D, Timpl R, Engel J (1987) Extended and globular protein domains in cartilage proteoglycans. Biochem J 245: 763–772

    PubMed  CAS  Google Scholar 

  13. Fosang AJ, Hardingham TE (1989) Isolation of the N-terminal globular domains from cartilage proteoglycans. Identification of G2 domain and its lack of interaction with hyaluronate and link protein. Biochem J 261: 801–809

    PubMed  CAS  Google Scholar 

  14. Dudhia J, Davidson CM, Wells TM, Vynios DH, Hardingham TE, Bayliss MT (1996) Age-related changes in the content of the C-terminal region of aggrecan in human articular cartilage. Biochem J 313: 933–940

    PubMed  CAS  Google Scholar 

  15. Doege KJ, Sasaki M, Kimura T, Yamada Y (1991) Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human specific repeats and additional alternatively spliced forms. J Biol Chem 266: 894–902

    PubMed  CAS  Google Scholar 

  16. Sandy JD, Neame PJ, Boynton RE, Flannery CR (1991) Catabolism of aggrecan in cartilage expiants. Identification of a major cleavage site within the interglobular domain. J Biol Chem 266: 8683–8685

    PubMed  CAS  Google Scholar 

  17. Loulakis P, Shrikhande A, Davis G, Maniglia CA (1992) N-Terminal sequence of proteoglycan fragments isolated from medium of interleukin-1-treated articular-cartilage cultures. Biochem J 284: 589–593

    PubMed  CAS  Google Scholar 

  18. Ilic MZ, Handley CJ, Robinson HC, Mok MT (1992) Mechanism of catabolism of aggrecan by articular cartilage. Archiv Biochem Biophys 294: 115–122

    Article  CAS  Google Scholar 

  19. Maniglia CA, Loulakis PP, Shrikhande AV, Davis G (1991) IL-1 elevated PG degradation reveals NH2-terminal sequence homology. Trans Orthop Res Soc 16: 193

    Google Scholar 

  20. Sandy JD, Flannery CR, Neame PJ, Lohmander LS (1992) The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J Clin Invest 89: 1512–1516

    Article  PubMed  CAS  Google Scholar 

  21. Lohmander LS, Neame PJ, Sandy JD (1993) The structure of aggrecan fragments in human synovial fluid:. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum 36: 1214–1222

    Article  PubMed  CAS  Google Scholar 

  22. Fosang AJ, Neame PJ, Hardingham TE, Murphy G, Hamilton JA (1991) Cleavage of cartilage proteoglycan between Gl and G2 domains by stromelysins. J Biol Chem 266: 15579–15582

    PubMed  CAS  Google Scholar 

  23. Flannery CR, Lark MW, Sandy JD (1992) Identification of a stromelysin cleavage site within the interglobular domain of human aggrecan: evidence for proteolysis at this site in vivo in human articular cartilage. J Biol Chem 267: 1008–1014

    PubMed  CAS  Google Scholar 

  24. Fosang AJ, Last K, Knäuper V, Neame PJ, Murphy G, Hardingham TE, Tschesche H, Hamilton JA (1993) Fibroblast and neutrophil collagenases cleave at two sites in the cartilage aggrecan interglobular domain. Biochem J 295: 273–276

    PubMed  CAS  Google Scholar 

  25. Flannery CR, Sandy JD (1993) Aggrecan catabolism in cartilage: Studies on the structure of a novel proteinase (aggrecanase) which cleaves the Glu 373-Ala 374 bond of the interglobular domain. Trans Orthop Res Soc 18: 190–190

    Google Scholar 

  26. Fosang AJ, Neame PJ, Last K, Hardingham TE, Murphy G, Hamilton JA (1992) The interglobular domain of cartilage aggrecan is cleaved by Pump, gelatinases and cathepsin B. J Biol Chem 267: 19470–19474

    PubMed  CAS  Google Scholar 

  27. Fosang AJ, Last K, Knäuper V, Murphy G, Neame PJ (1996) Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett 380: 17–20

    Article  PubMed  CAS  Google Scholar 

  28. Fosang AJ, Last K, Fujii Y, Seiki M, Okada Y (1998) Membrane-type 1 MMP (MMP-14) cleaves at three sites in the aggrecan interglobular domain. FEBS Lett 430: 186–190

    Article  PubMed  CAS  Google Scholar 

  29. Fosang AJ, Last K, Neame PJ, Murphy G, Knäuper V, Tschesche H, Hughes CE, Caterson B, Hardingham TE (1994) Neutrophil collagenase (MMP-8) cleaves at the aggrecanase site E373-A374 in the interglobular domain of cartilage aggrecan. Biochem J 304: 347–351

    PubMed  CAS  Google Scholar 

  30. Hughes C, Caterson B, White RJ, Roughley PJ, Mort JS (1992) Monoclonal antibodies recognizing protease-generated neoepitopes from cartilage proteoglycan degradation. J Biol Chem 267: 16011–16014

    PubMed  CAS  Google Scholar 

  31. Lark MW, Gordy JT, Weidner JR, Ayala J, Kimura JH, Williams HR, Mumford RA, Flannery CR, Carlson SS, Iwata M, Sandy JD (1995) Cell-mediated catabolism of aggrecan. Evidence that cleavage at the “aggrecanase” site (Glu373-Ala374) is a primary event in proteolysis of the interglobular domain. J Biol Chem 270: 2550–2556

    Article  PubMed  CAS  Google Scholar 

  32. Hutton S, Hayward J, Maciewicz RA, Bayliss M (1996) Age-related and zonal distribution of aggrecanase activity in normal and osteoarthritic human articular cartilage. Trans Orthop Res Soc 21: 150

    Google Scholar 

  33. Sztrolovics R, Alini M, Roughley PJ, Mort JS (1997) Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J 326: 235–241

    PubMed  CAS  Google Scholar 

  34. Hughes CE, Caterson B, Fosang AJ, Roughley PJ, Mort JS (1995) Monoclonal antibodies that specifically recognise neo-epitope sequences generated by “aggrecanase” and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro. Biochem J 305: 799–804

    PubMed  CAS  Google Scholar 

  35. Lark MW, Williams H, Hoerrner LA, Weidner J, Ayala JM, Harper CF, Christen A, Olszewski J, Konteatis Z, Webber R, Mumford RA (1995) Quantification of a matrix metalloproteinase-generated aggrecan Gl fragment using monospecific anti-peptide serum. Biochem J 307: 245–252

    PubMed  CAS  Google Scholar 

  36. Fosang AJ, Last K, Gardiner P, Jackson DC, Brown L (1995) Development of a cleavage site-specific monoclonal antibody for detecting metalloproteinase-derived aggrecan fragments: detection of fragments in human synovial fluids. Biochem J 310: 337–343

    PubMed  CAS  Google Scholar 

  37. Büttner FH, Hughes CE, Margerie D, Lichte A, Tschesche H, Caterson B, Bartnik E (1998) Membrane type 1 matrix metalloproteinase (MT1-MMP) cleaves the recombinant aggrecan substrate rAgglmut at the “aggrecanase” and the MMP sites. Characterization of mtl-mmp catabolic activities on the interglobular domain of aggrecan. Biochem J 333: 1–65

    Google Scholar 

  38. Hardingham TE, Bayliss MT (1990) Proteoglycans of articular cartilage: changes in ageing and in joint disease. Semin Arth Rheum 20(Suppl 1): 12–33

    Article  CAS  Google Scholar 

  39. Roughley PJ, White RJ, Poole AR (1985) Identification of a hyaluronic acid-binding protein that interferes with the preparation of high-buoyant-density proteoglycan aggregates from adult human articular cartilage. Biochem J 231: 129–138

    PubMed  CAS  Google Scholar 

  40. Lark MW, Bayne EK, Flanagan J, Harper CF, Hoerrner LA, Hutchinson NI, Singer II, Donatelli SA, Weidner JR, Williams HR, Mumford RA, Lohmander LS (1997) Aggrecan degradation in human cartilage. Evidence for both metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest 100: 93–106

    Article  PubMed  CAS  Google Scholar 

  41. Singer II, Scott S, Kawka DW, Bayne EK, Weidner JR, Williams HR, Mumford RA, Lark MW, McDonnell J, Christen AJ, Moore VL, Mudgett JS, Visco DM (1997) Aggrecanase and metalloproteinase-specific aggrecan neo-epitopes are induced in the articular cartilage of mice with collagen II-induced arthritis. Osteoarthritis Cartilage 5: 407–418

    Article  PubMed  CAS  Google Scholar 

  42. Van Meurs JBJ, van Lent PL, Holthuysen AEM, Stoop R, Singer II, Bayne EK, Van Den Berg WB (1998) Expression of aggrecanase and metalloproteinase induced neoepitopes in different murine models of arthritis. Trans Orthop Res Soc 23: 241

    Google Scholar 

  43. Chambers MG, Cox LJ, Chong L, Maciewicz R, Bayliss MT, Mason RM (1998) Localisation of neoepitopes for “aggrecanase” and general metalloproteinases in normal and osteoarthritic murine articular cartilage. Trans Orthop Res Soc 23: 436

    Google Scholar 

  44. Lark MW, Bayne EK, Lohmander LS (1995) Aggrecan degradation in osteoarthritis and rheumatoid arthritis. Acta Orthop Scand 66(Suppl 266): 92–97

    Google Scholar 

  45. Jameson BA, Wolf H (1988) The antigenic index: a novel algorithm for predicting antigenic determination. CABIOS 4: 181–186

    PubMed  CAS  Google Scholar 

  46. Arner EC, Pratta MA, Newton RC, Trzaskos J, Magolda R, Tortorella MD (1998) Comparison of cleavage efficiency of aggrecanase and stromelysin for the aggrecan core protein. Trans Orthop Res Soc 23: 922

    Google Scholar 

  47. Caterson B, Christner JE, Baker JR (1983) Identification of a monoclonal antibody that specifically recognizes corneal and skeletal keratan sulfate. J Biol Chem 258: 8848–8854

    PubMed  CAS  Google Scholar 

  48. Caterson B, Calabro A, Hampton A (1987) Monoclonal antibodies as probes for elucidating proteoglycan structure and function. In: T Wight, R Mecham (eds): Biology of the extracellular matrix. Academic Press, New York, 1–26

    Google Scholar 

  49. Mercuri FA, Doege KJ, Arner EC, Pratta MA, Last K, Fosang AJ (1999) Recombinant human aggrecan exhibits native binding properties and substrate specificity for matrix metalloproteinases and aggrecanase. J Biol Chem; in press

    Google Scholar 

  50. Hughes CE, Büttner FH, Eidenmuller B, Caterson B, Bartnik E (1997) Utilization of a recombinant substrate rAggl to study the biochemical properties of aggrecanase in cell culture systems. J Biol Chem 272: 20269–20274

    Article  PubMed  CAS  Google Scholar 

  51. Ilic MZ, Mok MT, Williamson OD, Campbell MA, Hughes CE, Handley CJ (1995) Catabolism of aggrecan by expiant cultures of human articular cartilage in the presence of retinoic acid. Arch Biochem Biophys 322: 22–30

    Article  PubMed  CAS  Google Scholar 

  52. Sandy JD, Plaas AHK, Koob TJ (1995) Pathways of aggrecan processing in joint tissues. Implications for disease mechanisms and monitoring. Acta Orthop Scand 66(Suppl 266): 26–32

    Google Scholar 

  53. Vilím V, Fosang AJ (1993) Characterization of proteoglycans isolated from associative extracts of human articular cartilage. Biochem J 293: 165–172

    PubMed  Google Scholar 

  54. Vilím V, Fosang AJ (1994) Proteoglycans isolated from dissociative extracts of differently-aged human articular cartilage: Characterization of naturally-occuring hyaluro-nan-binding fragments of aggrecan. Biochem J 304: 887–894

    PubMed  Google Scholar 

  55. Sandy JD, Boyer JL, Hymer SS, Thompson VP (1998) Control of chondrocyte aggrecanase by glutamine supply. Trans Orthop Res Soc 23: 853

    Google Scholar 

  56. Ilic MZ, Robinson HC, Handley CJ (1998) Characterization of aggrecan retained and lost from the extracellular matrix of articular cartilage. Involvement of carboxyl-terminal processing in the catabolism of aggrecan. J Biol Chem 273: 17451–17458

    Article  PubMed  CAS  Google Scholar 

  57. Sandy JD, Roughley PJ, Mumford RA, Lark MW (1996) Evidence for aggrecanasemediated cleavage at the E1714-G1715 bond of the CS-attachment region of human aggrecan in vivo. Trans Orthop Res Soc 21: 145

    Google Scholar 

  58. Tortorella MD, Trzaskos J, Magolda R, Arner EC (1995) Elution of active stromelysin from cartilage stimulated with interleukin-1. Trans Orthop Res Soc 20: 341

    Google Scholar 

  59. Arner EC, Pratta MA, Trzaskos JM, Decicco CP, Tortorella MD (1999) Generation and characterization of aggrecanase. A soluble, cartilage derived aggrecan-degrading activity. J Biol Chem 274: 6594–6601

    Article  PubMed  CAS  Google Scholar 

  60. Tortorella MD, Trzaskos JM, Arner EC (1997) Identification and characterization of an assay which defines the cartilage degrading enzyme, “aggrecanase”. Trans Orthop Res Soc 22: 452

    Google Scholar 

  61. Büttner FH, Hörber CLM, Hughes CE, Caterson B, Bartnik E (1998) Measuring aggrecanase activity with an ELIS A based assay system. Trans Orthop Res Soc 23: 916

    Google Scholar 

  62. Little C, Ghosh P, Hughes C, Caterson B (1997) Aggrecanase is involved in both normal and accelerated turnover of aggrecan in an ovine model of osteoarthritis. Trans Orthop Res Soc 22: 170

    Google Scholar 

  63. Flannery CR, Hughes CE, Little CB, Birch HL, Goodship AE, Caterson B (1997) Expression of matrix metalloproteinases and aggrecanase activity in articular joints from thoroughbred racehorses in a short term training study. Trans Orthop Res Soc 22: 455

    Google Scholar 

  64. Tortorella MD, Hughes CE, Wang H, Caterson B, Decicco CP, Arner EC (1996) MMP inhibitors block IL-1 induced “aggrecanase” cleavage of cartilage proteoglycans. Trans Orthop Res Soc 21: 148

    Google Scholar 

  65. Witt M, Fosang AJ, Hughes CE, Hardingham TE (1995) Changes in the pattern of aggrecan cleavage in cartilage expiant following stimulation with IL-la or retinoate and inhibition of cleavage by a metalloproteinase inhibitor. Trans Orthop Res Soc 20: 122

    Google Scholar 

  66. Chandrasekaran S, Tänzer ML (1992) Molecular cloning of chicken aggrecan. Biochem J 288:903–910

    PubMed  CAS  Google Scholar 

  67. Flannery CR, Little CB, Caterson B (1998) Molecular cloning and sequence analysis of the aggrecan interglobular domain from porcine, equine, bovine and ovine cartilage: comparison of proteinase-susceptible regions and sites of keratan sulfate substitution. Matrix Biol 16: 507–511

    Google Scholar 

  68. Plaas AHK, Sandy JD (1993) A cartilage expiant system for studies on aggrecan structure, biosynthesis and catabolism in discrete zones of the mammalian growth plate. Matrix 13: 135–147

    Article  PubMed  CAS  Google Scholar 

  69. Koob TJ, Hernandez DJ, Gordy JT, Sandy JD (1995) Aggrecan metabolism in bovine meniscus: role of aggrecanase in normal development. Trans Orthop Res Soc 20: 3

    Google Scholar 

  70. Yamada H, Watanabe K, Shimonaka M, Yamasaki M, Yamaguchi Y (1995) cDNA cloning and the identification of an aggrecanase-like cleavage site in rat brevican. Biochem Biophys Res Commun 216: 957–963

    Article  PubMed  CAS  Google Scholar 

  71. Maroudas A, Bayliss M, Uchitel-Kaushansky N, Schneiderman R, Gilav E (1998) Aggrecan turnover in human articular cartilage: use of aspartic acid racemization as a marker of molecular age. Arch Biochem Biophys 350: 61–71

    Article  PubMed  CAS  Google Scholar 

  72. van Meurs JB, van Lent PLEM, Holthuysen AEM, Stoop R, Singer II, Bayne EK, Visco D, Mudgett JS, Van Den Berg WB (1998) Expression of the MMP-induced neoepitope FVDIPEN is linked to severe cartilage damage: an essential role of stromelysin in antigen-induced arthritis. Trans Orthop Res Soc 23: 856–856

    Google Scholar 

  73. van Meurs JB, van Lent PL, Singer II, Bayne EK, van de Loo FA, Van Den Berg WB (1998) Interleukin-1 receptor antagonist prevents expression of the metalloproteinasegenerated neoepitope VDIPEN in antigen-induced arthritis. Arthritis Rheum 41: 647–656

    Article  PubMed  Google Scholar 

  74. Pratta MA, Tortorella MD, Newton RC, Trzaskos JM, Magolda R, Decicco C, Cole AA, Schumacher BL, Kuettner KE, Arner EC (1998) Aggrecan degradation in interleukin-1-stimulated bovine nasal cartilage expiants is up-regulated exclusively by aggrecanase-mediated cleavage. Trans Orthop Res Soc 23: 177

    Google Scholar 

  75. Fosang AJ, Weeks DB, Last K, Hardingham TE, Campbell IK, Maciewicz RA (1998) Cleavage of aggrecan in cartilage by MMPs and aggrecanase is mutually exclusive. Trans Orthop Res Soc 23: 83

    Google Scholar 

  76. Buttle DJ, Fowles A, Ilic MZ, Handley CJ (1997) “Aggrecanase” activity is implicated in tumour necrosis factor a mediated cartilage aggrecan breakdown but is not detected by an in vitro assay. J Clin Pathol: Mol Pathol 50: 153–159

    Article  CAS  Google Scholar 

  77. Arner EC, DiMeo TM, Pratta MA, Tortorella MD (1996) Interleukin-1 induces aggrecanase-mediated cleavage in human articular cartilage without up-regulating glycosaminoglycan release. Trans Orthop Res Soc 21: 364

    Google Scholar 

  78. Hughes CE, Wang H, Caterson B, Tortorella MD, Arner EC (1995) Time course of IL-1 induced “aggrecanase” cartilage catabolism indicates the presence of both different rates of release and different pools of aggrecan metabolites. Trans Orthop Res Soc 20: 329

    Google Scholar 

  79. Ilic MZ, Haynes SR, Winter GM, Handley CJ (1995) Kinetics of release of aggrecan from expiant cultures of bovine cartilage from different sources and from animals of different ages. Acta Orthop Scand 66(Suppl 266): 33–37

    Google Scholar 

  80. Buttle DJ, Handley CJ, Ilic MZ, Saklatvala J, Murata M, Barrett AJ (1993) Inhibition of cartilage proteoglycan release by a specific inactivator of cathepsin B and an inhibitor of matrix metalloproteinases:. Evidence for two converging pathways of chondrocyte-mediated proteoglycan degradation. Arthritis Rheum 36: 1709–1717

    Article  PubMed  CAS  Google Scholar 

  81. Hughes CE, Little CB, Büttner FB, Bartnik E, Caterson B (1998) Differential expression of aggrecanase and matrix metalloproteinase activity in chondrocytes isolated from bovine or porcine articular cartilage. J Biol Chem 273: 30576–30582

    Article  PubMed  CAS  Google Scholar 

  82. Little CB, Hughes CE, Buttner FH, Caterson B, Bartnik E (1998) Human osteoarthritic chondrocytes secrete aggrecanase and active MMPs in culture. Trans Orthop Res Soc 23: 433

    Google Scholar 

  83. Sandy JD, Garcia KA, Gordy JT, Plaas AHK (1995) Aggrecanase-mediated cleavage of aggrecan by cultured fibroblasts. Trans Orthop Res Soc 20: 331

    Google Scholar 

  84. Homandberg GA, Meyers R, Xie D (1992) Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. J Biol Chem 267: 3597–3604

    PubMed  CAS  Google Scholar 

  85. Tortorella MD, Arner EC (1997) Fibronectin fragments induce matrix metalloproteinase production and aggrecanase-mediated cartilage degradation. Trans Orthop Res Soc 22: 106

    Google Scholar 

  86. Homandberg GA, Davis G, Maniglia CA, Shrikhande A (1997) Cartilage chondrolysis by fibronectin fragments causes cleavage of aggrecan at the same site as found in osteoarthritic cartilage. Osteoarthritis Cartilage 5: 450–453

    Article  PubMed  CAS  Google Scholar 

  87. Sandy JD, Brewton RG, Boyer J, Buck de Ortiz JL, Mueller G, Buschmann MD, Boileau G, Crine P (1997) Aggrecanase-specific cleavage of aggrecan results from addition of neprilysin to chondrocyte culture. Trans Orthop Res Soc 22: 434

    Google Scholar 

  88. Fosang AJ, Last K, Maciewicz RA (1996) Aggrecan is degraded by matrix metalloproteinases in human arthritis. Evidence that matrix metalloproteinase and aggrecanase activities can be independent. J Clin Invest 98: 2292–2299

    Article  PubMed  CAS  Google Scholar 

  89. Lohmander S (1977) Turnover of proteoglycans in guinea pig costal cartilage. Arch Biochem Biophys 180: 93–101

    Article  PubMed  CAS  Google Scholar 

  90. Sandy JD (1992) Extracellular metabolism of aggrecan. In: KE Kuettner, R Schleyerbach, JG Peyron, VC Hascall (eds): Articular cartilage and osteoarthritis. Raven Press, New York, 21–33

    Google Scholar 

  91. Hascall VC, Sandy JD, Handley CJ (1999) Regulation of proteoglycan metabolism in articular cartilage. In: B Caterson, C Archer, M Benjamin, J Ralph (eds): Biology of the synovial joint. Harwook Academic Publisher, Reading, 101–120

    Google Scholar 

  92. Mok SS, Masuda K, Häuselmann HJ, Aydelotte MB, Thonar EJMA (1994) Aggrecan synthesized by mature bovine chondrocytes suspended in alginate. Identification of two distinct metabolic matrix pools. / Biol Chem 269: 33021–33027

    CAS  Google Scholar 

  93. Barry FP, Maciewicz R, Neame PJ, Bayliss MT (1996) Structure of the free Gl fragments from normal aged human articular cartilage. Trans Orthop Res Soc 21: 762

    Google Scholar 

  94. Bonassar LJ, Sandy JD, Lark MW, Plaas AH, Frank EH, Grodzinsky AJ (1997) Inhibition of cartilage degradation and changes in physical properties induced by IL-lβ and retinoic acid using matrix metalloproteinase inhibitors. Arch Biochem Biophys 344: 404–412

    Article  PubMed  CAS  Google Scholar 

  95. Cole AA, Chubinskaya S, Schumacher B, Huch K, Cs-Szabo G, Yao J, Mikecz K, Hasty KA, Kuettner KE (1996) Chondrocyte matrix metalloproteinase-8. Human articular chondrocytes express neutrophil collagenase. J Biol Chem 271: 11023–11026

    Article  PubMed  CAS  Google Scholar 

  96. Pratta MA, Tortorella MD, Gunyuzulu P, Davis G, George H, Arner EC (1996) Coinduction of MMP-3 and MMP-8 synthesis in human chondrocytes in response to inter-leukin-1. Trans Orthop Res Soc 21: 170

    Google Scholar 

  97. Chubinskaya S, Huch K, Mikecz K, Cs-Szabó G, Hasty KA, Kuettner KE, Cole AA (1996) Chondrocyte matrix metalloproteinase-8: Upregulation of neutrophil collagenase by interleukin-lβ in human cartilage from knee and ankle joints. Lab Invest 74: 232–240

    PubMed  CAS  Google Scholar 

  98. Arner EC, Decicco CP, Cherney R, Tortorella MD (1997) Cleavage of native cartilage aggrecan by neutrophil collagenase (MMP-8) is distinct from endogenous cleavage by aggrecanase. J Biol Chem 272: 9294–9299

    Article  PubMed  CAS  Google Scholar 

  99. Yamaguchi M, Hanzawa S, Hirano K-I, Yamagata Y, Ichishima E (1993) Specificity and molecular properties of penicillolysin, a metalloproteinase from Penicillium citrinum. Phytochemistry 33: 1317–1321

    Article  PubMed  CAS  Google Scholar 

  100. Arner EC, Decicco CP, Pratta MA, Newton RC, Trzaskos J, Magolda RL, Tortorella MD (1997) “Aggrecanase”, and not MMP-1,-2,-3,-8,-9, is critical for IL-1-induced cartilage aggrecan degradation. Trans Orthop Res Soc 22: 454

    Google Scholar 

  101. Buttle DJ, Saklatvala J, Tamai M, Barrett AJ (1992) Inhibition of interleukin-1-stimulated cartilage proteoglycan degradation by a lipophilic inactivator of cysteine endopeptidases. Biochem J 281: 175–177

    PubMed  CAS  Google Scholar 

  102. Wolfsberg TG, Primakoff P, Myles DG, White JM (1997) ADAM, a novel family of membrane proteins containing a disintegrin and metalloprotease domain: Multipotential functions in cell-cell and cell-matrix interactions. J Cell Biol 13: 275–278

    Google Scholar 

  103. Stocker W, Grams F, Barmann U, Reinemer P, Gomis-Rüth F (1997) The metzincins-Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Science 4: 823–840

    Article  Google Scholar 

  104. Tortorella MD, Pratta MA, Fox JW, Arner EC (1998) The interglobular domain of cartilage aggrecan is cleaved by hemorrhagic metalloproteinase HT-d (Atrolysin C) at the matrix metalloproteinase and aggrecanase sites. J Biol Chem 273: 5846–5850

    Article  PubMed  CAS  Google Scholar 

  105. Ganu V, Wang W, Hu S, Melton R (1997) Atrolysin D, a metalloproteinase of the reprolysin family degrades articular cartilage components in vitro. Arthritis Rheum 40: S87(Abstract)

    Article  Google Scholar 

  106. McKie N, Edwards T, Dallas DJ, Houghton A, Stringer B, Graham R, Russell G, Croucher PI (1997) Expression of members of a novel membrane linked metalloproteinase family (ADAM) in human articular chondrocytes. Biochem Biophys Res Commun 230:335–339

    Article  PubMed  CAS  Google Scholar 

  107. Chubinskaya S, Cs-Szabo G, Kuettner KE (1998) ADAM-10 message is expressed in human articular cartilage. J Histochem Cytochem 46: 723–729

    Article  PubMed  CAS  Google Scholar 

  108. Barry FP, Gaw JU, Young CN, Neame PJ (1992) Hyaluronan-binding region of aggre-can from pig laryngeal cartilage. Biochem J 286: 761–769

    PubMed  CAS  Google Scholar 

  109. Barry FP, Rosenberg LC, Gaw JU, Koob TJ, Neame PJ (1995) N-and O-linked keratan sulfate on the hyaluronan binding region of aggrecan from mature and immature bovine cartilage. J Biol Chem 270: 20516–20524

    Article  PubMed  CAS  Google Scholar 

  110. Knäuper V, Lopez-Otin C, Smith B, Knight G, Murphy G (1996) Biochemical characterization of human collagenase-3. J Biol Chem 271: 1544–1550

    Article  PubMed  Google Scholar 

  111. Hering TM, Kollar J, Huynh TD (1997) Complete coding sequence of bovine aggrecan: comparative structural analysis. Arch Biochem Biophys 345: 259–270

    Article  PubMed  CAS  Google Scholar 

  112. Doege KJ, Sasaki M, Horigan E, Hassell JR, Yamada Y (1987) Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones. J Biol Chem 262: 17757–17767

    PubMed  CAS  Google Scholar 

  113. Schechter I, Berger A (1967) On the size of the active site in proteases. Biochem Biophys Res Commun 27: 157–162

    Article  PubMed  CAS  Google Scholar 

  114. Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, Liu R, Rosenfeld SA, Copeland RA, Decicco CP, Wynn R et al (1999) Purification and cloning of aggrecanase-1: A member of the AD AMTS family of proteins. Science 284: 1664–1666

    Article  PubMed  CAS  Google Scholar 

  115. Kuno K, Kanada N, Nakashima E, Fujiki F, Ichimura F, Matsushima K (1997) Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombosponding motifs as an inflammation associated gene. J Biol Chem 272: 556–562

    Article  PubMed  CAS  Google Scholar 

  116. Kuno K, Iizasa H, Ohno S, Matsushima K (1997) The exon/intron organization and chromosomal mapping of the mouse AD AMTS-1 gene encoding an ADAM family protein with TSP motifs. Genomics 46: 466–471

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Fosang, A.J. (1999). Aggrecanase and cartilage proteoglycan degradation. In: Bottomley, K.M.K., Bradshaw, D., Nixon, J.S. (eds) Metalloproteinases as Targets for Anti-Inflammatory Drugs. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8666-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8666-6_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9724-2

  • Online ISBN: 978-3-0348-8666-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics