Skip to main content

Membrane type matrix metalloproteinases: regulators of focal proteolysis

  • Chapter
Metalloproteinases as Targets for Anti-Inflammatory Drugs

Part of the book series: Progress in Inflammation Research ((PIR))

  • 74 Accesses

Abstract

Proteolysis of the extracellular matrix (ECM) is a key component of the inflammatory response, not only as a feature of the structural remodelling associated with the repair process, but also as a component of the cell-cell and cell-ECM interactions underlying both processes. The role of matrix metalloproteinases (MMPs) in matrix turnover has long been under scrutiny, and it has become evident that their activities are critical necessitating several levels of regulation in vivo. Most MMPs are not present at high levels in normal tissues and their expression is tightly regulated by growth factors and cytokines when remodelling does occur. The MMPs are generally secreted into the extracellular environment as inactive proenzymes, an important level of regulation of their activity then being their conversion to the active form by proteolytic removal of the propeptide. Association of MMPs with the cell surface or ECM components modulates their relationship with substrates, activators and inhibitors, acting as further levels for the regulation of their activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mignatti P, Robbins E, Rifkin DE (1986) Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade. Cell 47: 487–498

    Article  PubMed  CAS  Google Scholar 

  2. Murphy G, Atkinson S, Ward R, Gavrilovic J, Reynolds JJ (1992) The role of plas-minogen activators in the regulation of connective tissue metalloproteinases. Ann NY Acad Sci 667: 1–12

    Article  PubMed  CAS  Google Scholar 

  3. Okada Y, Morodomi T, Enghild JJ, Suzuki K, Yasui A, Nakanishi I, Salvesen G, Nagase H (1990) Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts Purification and activation of the precursor and enzymic properties. Eur J Biochem 197:721–730

    Article  Google Scholar 

  4. Knäuper V, Will H, López-OtÍn C, Smith B, Atkinson SJ, Stanton H, Hembry RM, Murphy G (1996) Cellular mechanisms for human procollagenase-3 (MMP-13) activation-Evidence that MT1-MMP (MMP-14) and gelatinase A (MMP-2) are able to generate active enzyme. J Biol Chem 271: 17124–17131

    Article  PubMed  Google Scholar 

  5. Knäuper V, Smith B, Lopez-Otin C, Murphy G (1997) Activation of progelatinase B (proMMP-9) by active collagenase-3 (MMP-13). Eur J Biochem 248: 369–373

    Article  PubMed  Google Scholar 

  6. Cowell S, Knäuper V, Stewart ML, d’Ortho MP, Stanton H, Hembry R, López-OtÍn C, Reynolds JJ, Murphy G (1998) Induction of matrix metalloproteinase activation cascades based on membrane type I matrix metalloproteinase. Biochem J 331: 453–458

    PubMed  CAS  Google Scholar 

  7. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370: 61–65

    Article  PubMed  CAS  Google Scholar 

  8. Will H, Hinzmann B (1995) cDNA sequence and mRNA tissue distribution of a novel human matrix metalloproteinase with a potential transmembrane segment. Eur J Biochem 231: 602–608

    Article  PubMed  CAS  Google Scholar 

  9. Takino T, Sato H, Shinagawa A, Seiki M (1995) Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library-MT-MMPs form a unique membrane-type subclass in the MMP family. J Biol Chem 270: 23013–23020

    Article  PubMed  CAS  Google Scholar 

  10. Puente XS, Pendás AM, Llano E, Velasco G, López-OtÍn C (1996) Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Res 56: 944–949

    PubMed  CAS  Google Scholar 

  11. Sato H, Tanaka M, Takino T, Inoue M, Seiki M (1997) Assignment of the human genes for membrane-type-1,-2 and-3 matrix metalloproteinases (MMP-14, MMP15 and MMP-16) to 14ql22-16ql22-q21 and 8q21 respectively by in situ hybridisation. Genomics 39: 412–413

    Article  PubMed  CAS  Google Scholar 

  12. Hirose T, Patterson C, Pourmotabbed T, Mainardi CL, Hasty KA (1993) Structure-function relationship of human neutrophil collagenase: identification of regions responsible for substrate specificity and general proteinase activity. Proc Natl Acad Sci USA 90: 2569–2573

    Article  PubMed  CAS  Google Scholar 

  13. Knäuper V, Docherty AJP, Smith B, Tschesche H, Murphy G (1997b) Analysis of the contribution of the hinge region of human neutrophil collagenase (HNC, MMP-8) to stability and collagenolytic activity by alanine scanning mutagenesis. FEBS Lett 405: 60–64

    Article  PubMed  Google Scholar 

  14. Murphy G, Knäuper V (1997) Relating matrix metalloproteinase structure to function: Why the “hemopexin” domain. Matrix Biol 15: 511–518

    Article  PubMed  CAS  Google Scholar 

  15. Li J, Brick P, O’Hare MC, Skarzynski T, Lloyd LF, Curry VA, Clark IM, Bigg HF, Hazleman BL, Cawston TE, Blow DM (1995) Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed β-propeller. Structure 3: 541–549

    Article  PubMed  CAS  Google Scholar 

  16. Libson AM, Gittis AG, Collier IE, Marmer BL, Goldberg GI, Lattman EE (1995) Crystal structure of the haemopexin-like C-terminal domain of gelatinase A. Nature Struct Biol 2: 938–942

    Article  PubMed  CAS  Google Scholar 

  17. Gohlke U, Gomis-Ruth FX, Crabbe T, Murphy G, Docherty AJP, Bode W (1996) The C-terminal (haemopexin-like) domain structure of human gelatinase A (MMP2): Structural implications for its function. FEBS Lett 378: 126–130

    Article  PubMed  CAS  Google Scholar 

  18. Gomis-Rüth FX, Gohlke U, Betz M, Knäuper V, Murphy G, López-Otín C, Bode W (1996) The helping hand of collagenase-3 (MMP-13): 2.7 Å crystal structure of its C-terminal haemopexin-like domain. J Mol Biol 264: 556–566

    Article  PubMed  Google Scholar 

  19. Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 272: 2446–2451

    Article  PubMed  CAS  Google Scholar 

  20. Imai K, Ohuchi E, Aoki T, Nomura H, Fujii Y, Sato H, Seiki M, Okada Y (1996) Membrane-type matrix metalloproteinase 1 is a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinases 2. Cancer Res 56: 2707–2710

    PubMed  CAS  Google Scholar 

  21. Pei DQ, Weiss SJ (1996) Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J Biol Chem 271: 9135–9140

    Article  PubMed  CAS  Google Scholar 

  22. D’Ortho MP, Will H, Atkinson S, Butler G, Messent A, Gavrilovic J, Smith B, Timpl R, Zardi L, Murphy G (1997) Membrane-type matrix metalloproteinases 1 and 2 (MT1-and MT2-MMP) exhibit a broad spectrum proteolytic capacity comparable to many matrix metalloproteinases. Eur J Biochem 250: 751–757

    Article  CAS  Google Scholar 

  23. Clark I, Cawston TE (1989) Fragments of human fibroblast collagenase. Purification and characterisation. Biochem J 263: 201–206

    PubMed  CAS  Google Scholar 

  24. Knäuper V, Osthues A, DeClerck YA, Langley KE, Blaser J, Tschesche H (1993) Fragmentation of human polymorphonuclear-leucocyte collagenase. Biochem J 291: 847–854

    PubMed  Google Scholar 

  25. Knäuper V, Cowell S, Smith B, López-Otin C, O’Shea M, Morris H, Zardi L, Murphy G (1997) The role of the c-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J Biol Chem 272: 7608–7616

    Article  PubMed  Google Scholar 

  26. Atkinson SJ, Crabbe T, Cowell S, Ward RV, Butler MJ, Sato H, Seiki M, Reynolds JJ, Murphy G (1995) Intermolecular autolytic cleavage can contribute to the activation of progelatinase A by cell membranes. J Biol Chem 270: 30479–30485

    Article  PubMed  CAS  Google Scholar 

  27. Will H, Atkinson SJ, Butler GS, Smith B, Murphy G (1996) The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation-Regulation by TIMP-2 and TIMP-3. J Biol Chem 271: 17119–17123

    Article  PubMed  CAS  Google Scholar 

  28. Butler GS, Will H, Atkinson SJ, Murphy G (1997) Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur J Biochem 244: 653–657

    Article  PubMed  CAS  Google Scholar 

  29. Murphy G, Willenbrock F, Ward RV, Cockett MI, Eaton D, Docherty AJP (1992) The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases. Biochem J 283: 637–641

    PubMed  CAS  Google Scholar 

  30. Ward RV, Atkinson SJ, Reynolds JJ, Murphy G (1994) Cell surface-mediated activation of progelatinase A: demonstration of the involvement of the C-terminal domain of progelatinase A in cell surface binding and activation of progelatinase A by primary fibroblasts. Biochem J 304: 263–269

    PubMed  CAS  Google Scholar 

  31. Strongin AY, Marmer BL, Grant GA, Goldberg GI (1993) Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2. J Biol Chem 268: 14033–14039

    PubMed  CAS  Google Scholar 

  32. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270: 5331–5338

    Article  PubMed  CAS  Google Scholar 

  33. Cao J, Sata H, Takino T, Seiki M (1995) The C-terminal region of membrane type matrix metalloproteinase is a functional transmembrane domain required for progelatinase A activation. J Biol Chem 270: 801–805

    Article  PubMed  CAS  Google Scholar 

  34. Sato H, Takino T, Kinoshita T, Imai K, Okada Y, Stevenson WGS, Seiki M (1996) Cell surface binding and activation of gelatinase A induced by expression of membrane-type-1-matrix metalloproteinase (MT1-MMP). FEBS Lett 385: 238–240

    Article  PubMed  CAS  Google Scholar 

  35. Cao JA, Rehemtulla A, Bahou W, Zucker S (1996) Membrane type matrix metalloproteinase 1 activates pro-gelatinase A without furin cleavage of the N-terminal domain. J Biol Chem 271: 30174–30180

    Article  PubMed  CAS  Google Scholar 

  36. Butler GS, Butler M, Atkinson SJ, Will H, Tamura T, Schade van Westrum S, Crabbe T, Clements J, d’Ortho M-P, Murphy G (1998) The TIMP-2-membrane type I metalloproteinase ‘receptor’ regulates the concentration and efficient activation of progelatinase A A kinetic study. J Biol Chem 273: 871–880

    Article  PubMed  CAS  Google Scholar 

  37. Lee AY, Akers KT, Collier M, Li L, Eisen AZ, Seltzer JL (1997) Intracellular activation of gelatinase A (72-kDa type IV collagenase) by normal fibroblasts. Proc Natl Acad Sci USA 94: 4424–4429

    Article  PubMed  CAS  Google Scholar 

  38. Pendás AM, Knäuper V, Puente XS, Llano E, Mattei MG, Apte S, Murphy G, LápezOtín C (1997) Identification and characterization of a novel human matrix metallopro-teinase with unique structural characteristics, chromosomal location, and tissue distribution. J Biol Chem 272: 4281–4286

    Article  PubMed  Google Scholar 

  39. Shofuda K, Yasumitsu H, Nishihashi A, Miki K, Miyazaki K (1997) Expression of three membrane-type matrix metalloproteinases (MT-MMPs) in rat vascular smooth muscle cells and characterization of MT3-MMPs with and without transmembrane domain. J Biol Chem 272: 9749–9754

    Article  PubMed  CAS  Google Scholar 

  40. Basset P, Okada A, Chenard MP, Kannan R, Stoll I, Anglard P Bellocq, JP Rio, MC (1997) Matrix metalloproteinases as stromal effectors of human carcinoma progression: Therapeutic implications. Matrix Biol 15: 535–541

    Article  PubMed  CAS  Google Scholar 

  41. Ueno H, Nakamura H, Inoue M, Imai K, Noguchi M, Sato H, Seiki M, Okada Y (1997) Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res 57: 2055–2060

    Google Scholar 

  42. Pulyaeva H, Bueno J, Polette M, Birembaut P, Sato H, Seiki M, Thompson EW (1997) MT1-MMP correlates with MMP-2 activation potential seen after epithelial to mesenchymal transition in human breast carcinoma cells. Clin Exp Metastasis 15: 111–120

    Article  PubMed  CAS  Google Scholar 

  43. Okada A, Tomasetto C, Lutz Y, Bellocq JP, Rio MC, Basset P (1997) Expression of matrix metalloproteinases during rat skin wound healing: Evidence that membrane type-1 matrix metalloproteinase is a stromal activator of pro-gelatinase A. J Cell Biol 137: 67–77

    Article  PubMed  CAS  Google Scholar 

  44. Imai K, Ohta S, Matsumoto T, Fujimoto N, Sato H, Seiki M, Okada Y (1997) Expression of membrane-type 1 matrix metalloproteinase and activation of progelatinase A in human osteoarthritic cartilage. Am J Pathol 151: 245–256

    PubMed  CAS  Google Scholar 

  45. Apte S, Fukai N, Beier D, Olsen BR (1997) The matrix metalloproteinase-14 (MMP-14) gene is structurally distinct from other MMP genes and is coexpressed with the TIMP-2 gene during mouse embryogenesis. J Biol Chem 272: 25511–25517

    Article  PubMed  CAS  Google Scholar 

  46. Migita K, Eguchi K, Kawabe Y, Ichinose Y, Tsukada T, Aoyagi T, Nakamura H, Nagataki S (1996) TNF-a-mediated expression of membrane-type matrix metalloproteinase in rheumatoid synovial fibroblasts. Immunology 89: 553–557

    Article  PubMed  CAS  Google Scholar 

  47. Lohi J, Lehti K, Westermarck J, Kähäri VM, Keski-Oja J (1996) Regulation of membrane-type matrix metalloproteinase-1 expression by growth factors and phorbol 12-myristate 13-acetate. Eur J Biochem 239: 239–247

    Article  PubMed  CAS  Google Scholar 

  48. Yang MZ, Hayashi K, Hayashi M, Fujii JT, Kurkinen M (1996) Cloning and developmental expression of a membrane-type matrix metalloproteinase from chicken. J Biol Chem 271: 25548–25554

    Article  PubMed  CAS  Google Scholar 

  49. Gilles C, Polette M, Seiki M, Birembaut P, Thompson EW (1997) Implication of collagen type 1-induced membrane-type 1 matrix metalloproteinase expression and matrix metalloproteinase-2 activation in the metastatic progression of breast carcinoma. Lab Invest 76: 651–660

    PubMed  CAS  Google Scholar 

  50. Yu M, Sato H, Seiki M, Thompson EW (1995) Complex regulation of membrane-type matrix metalloproteinase expression and matrix metalloproteinase-2 activation by concanavalin A in MDA-MB-231 human breast cancer cells. Cancer Res 55: 3272–3277

    PubMed  CAS  Google Scholar 

  51. Thant AA, Serbulea M, Kikkawa F, Liu E, Tomoda Y, Hamaguchi M (1997) c-Ras is required for the activation of the matrix metalloproteinases by concanavalin A in 3Y1 cells. FEBS Lett 406: 28–30

    Article  PubMed  CAS  Google Scholar 

  52. Foda HD, George S, Conner C, Drews M, Tompkins DC, Zucker S (1996) Activation of human umbilical vein endothelial cell progelatinase A by phorbol myristate acetate: A protein kinase C-dependent mechanism involving a membrane-type matrix metalloproteinase. Lab Invest 74: 538–545

    PubMed  CAS  Google Scholar 

  53. Tomasek JJ, Halliday NL, Updike DL, Ahern-Moore JS, Vu TKH, Liu RW, Howard EW (1997) Gelatinase A activation is regulated by the organization of the polymerized actin cytoskeleton. J Biol Chem 272: 7482–7487

    Article  PubMed  CAS  Google Scholar 

  54. Ailenberg M, Silverman M (1996) Cellular activation of mesangial gelatinase A by cytochalasin D is accompanied by enhanced mRNA expression of both gelatinase A and its membrane-associated gelatinase A activator (MT-MMP). Biochem J 313: 879–884

    PubMed  CAS  Google Scholar 

  55. Lohi J, Keski-Oja J (1995) Calcium ionophores decrease pericellular gelatinolytic activity via inhibition of 92-kDa gelatinase expression and decrease of 72-kDa gelatinase activation. J Biol Chem 270: 17602–17609

    Article  PubMed  CAS  Google Scholar 

  56. Yu M, Sato H, Seiki M, Spiegel S, Thompson EW (1997) Calcium influx inhibits MT1-MMP processing and blocks MMP-2 activation. FEBS Lett 412: 568–572

    Article  PubMed  CAS  Google Scholar 

  57. Smeekens SP (1993) Processing of protein precursors by a novel family of subtilisin-related mammalian endoproteases. BioTechnology 11: 182–186

    Article  PubMed  CAS  Google Scholar 

  58. Taylor JM (1997) Transgenic rabbit models for the study of atherosclerosis. Ann NY Acad Sci 811: 146–154

    Article  PubMed  CAS  Google Scholar 

  59. Seidah N, Chrétien M (1997) Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr Opin Biotech 8: 602–607

    Article  PubMed  CAS  Google Scholar 

  60. Pei D, Weiss SJ (1995) Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375: 244–247

    Article  PubMed  CAS  Google Scholar 

  61. Sato H, Kinoshita T, Takino T, Nakayama K, Seiki M (1996) Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by fur in and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Lett 393: 101–104

    Article  PubMed  CAS  Google Scholar 

  62. Okumura Y, Sato H, Seiki M, Kido H (1997) Proteolytic activation of the precursor of membrane type 1 matrix metalloproteinase by human plasmin-A possible cell surface activator. FEBS Lett 402: 181–184

    Article  PubMed  CAS  Google Scholar 

  63. Romanic AM, Madri JA (1994) The induction of 72-kD gelatinase in T cells upon adhesion to endothelial cells is VCAM-1 dependent. J Cell Biol 125: 1165–1178

    Article  PubMed  CAS  Google Scholar 

  64. Gijbels K, Galardy RE, Steinman L (1994) Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteinases. J Clin Invest 94: 2177–2182

    Article  PubMed  CAS  Google Scholar 

  65. Leppert D, Waubant E, Galardy R, Bunnett NW, Hauser SL (1995) T cell gelatinases mediate basement membrane transmigration in vitro. J Immunol 154: 4379–4389

    PubMed  CAS  Google Scholar 

  66. Madri JA, Graesser D, Haas T (1996) The roles of adhesion molecules and proteinases in lymphocyte transendothelial migration. Biochem Cell Biol 74: 749–757

    Article  PubMed  CAS  Google Scholar 

  67. Nakahara H, Howard L, Thompson EW, Sato H, Seiki M, Yeh YY, Chen WT (1997) Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc Natl Acad Sci USA 94: 7959–7964

    Article  PubMed  CAS  Google Scholar 

  68. Cockett MI, Murphy G, Birch ML, O’Connel JP, Crabbe T, Millican AT, Hart IR, Docherty AJP (1997) Matrix metalloproteinases and metastatic cancer. Biochem Soc Symp 63: 295–313

    Google Scholar 

  69. Deryugina El, Bourdon MA, Luo G-X, Reisfeld RA, Strongin A (1997) Matrix metallo-proteinase-2 activation modulates glioma cell migration. J Cell Science 110: 2473–2482

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Murphy, G., Knäuper, V. (1999). Membrane type matrix metalloproteinases: regulators of focal proteolysis. In: Bottomley, K.M.K., Bradshaw, D., Nixon, J.S. (eds) Metalloproteinases as Targets for Anti-Inflammatory Drugs. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8666-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8666-6_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9724-2

  • Online ISBN: 978-3-0348-8666-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics