Skip to main content

Abstract

We would like to consider here the so called Thermistor problem. The heat produced is a conductor by an electric current leads system:

$$\left\{ {\begin{array}{*{20}{c}} {{{u}_{t}} - \nabla \cdot k\left( u \right)\nabla u = \sigma \left( u \right){{{\left| {\nabla \varphi } \right|}}^{2}} in \Omega \times \left( {0,T} \right), \left( {1.1.1} \right)} \hfill \\ {u = 0 on \Gamma \times \left( {0,T} \right), u\left( { \cdot ,0} \right) = {{u}_{0}}, \left( {1.1.2} \right)} \hfill \\ {\nabla \cdot \sigma \left( u \right)\nabla \varphi = 0 in \Omega \times \left( {0,T} \right), \left( {1.1.3} \right)} \hfill \\ {\varphi = {{\varphi }_{0}} on \Gamma \times \left( {0,T} \right). \left( {1.1.4} \right)} \hfill \\ \end{array} } \right. $$
(1.1)

Here, Ω is a smooth bounded open set of R n, Γ denotes its boundary,Т is some positive given number,φ is the electrical potential, the thermal conductivity and σ(u) >0 the electrical conductivity. Of course the physical situation is when n = 3 and Ω is the spatial domain occupied by the body that we consider and which is assumed to conduct both heat and electricity. However, the mathematical results are worth to be considered for any n≥1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.N.Antontsev, M.Chipot. Existence, Stability, Blow up of Solution for Thermistor Problem. Dokl. Akad. Nauk. Russian (to appear).

    Google Scholar 

  2. S.N. Antontsev, A.V. Kazhikov, V.N. Monakhov. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Studies in Mathematics and its Applications # 22, (1990), North Holland.

    Google Scholar 

  3. A. Bensoussan, L.J.Lions. Aplications des inequations varia-tionnelles en controle stochastique, (1978), Dunod, Paris.

    Google Scholar 

  4. M.Chipot, J.I.Diaz, R.Kersner. Existence and uniqueness results for the Thermistor problem with temperature dependent conductivity. (To appear)

    Google Scholar 

  5. M. Chipot, G. Gimatti. A uniqueness result for the Thermistor problem. European J. of Applied Math., 2, (1991),p.97–103.

    Article  Google Scholar 

  6. G.Gimatti. Existence of weak solutions for the nonstationary problem of the Jouhle heating of a conductor. Preprint, Universita di Pisa. (to appear)

    Google Scholar 

  7. G. Gimatti. A bound for the temperature in the thermistor problem. J. of Applied Math.,40, (1988), p.15–22.

    Google Scholar 

  8. G. Gimatti. Remark on existence and uniqueness for the ther-mistor problem, Quaterly of Applied Math., 47, (1989), p.117–121.

    Google Scholar 

  9. G. Gimatti, G. Prodi. Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor, Ann.Mat.Pura Ap1.152, (1989), p.227–236.

    Google Scholar 

  10. A. Friedman. Partial Differential equations of parabolic type, Prentice Hall, (1984).

    Google Scholar 

  11. D.Gilbarg, N.S. Trudinger. Elliptic partial differential equations of second order. Springer Verlag, (1985).

    Google Scholar 

  12. S.D.Howison, J.F.Rodriques, M.Shillor. Stationary soluti-on to the Thermistor problem. J.Math.Anal.Apl. (To apear).

    Google Scholar 

  13. F. Kohlrausch. Uber den stationaren Temperatur-zustand eines electrisch geheizten Leiters. Ann.Physics 1, (1990), p.132–158.

    Google Scholar 

  14. J.L. Lions. Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, (1969).

    Google Scholar 

  15. M.H. Protter, H.F. Weinberger. Maximum principles in differential equations, Prentice Hall, (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Basel AG

About this chapter

Cite this chapter

Antontsev, S.N., Chipot, M. (1992). Some Results on the Thermistor Problem. In: Antontsev, S.N., Khludnev, A.M., Hoffmann, KH. (eds) Free Boundary Problems in Continuum Mechanics. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, vol 106. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8627-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8627-7_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9705-1

  • Online ISBN: 978-3-0348-8627-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics