Skip to main content

Incompressible Fluid Flows with Free Boundary and the Methods for their Research

  • Chapter
Book cover Free Boundary Problems in Continuum Mechanics

Abstract

Thomson W. and Tait P. were the first who applied the Hamilton principle to the fluid [1,2]

$$\int\limits_{{{{t}_{1}}}}^{{{{t}_{2}}}} \delta Ldt = \int\limits_{{{{t}_{1}}}}^{{{{t}_{2}}}} {dt} \int\limits_{{\partial \Omega }} {p{{\delta }_{n}}} \bullet ,dS, {{\delta }_{n}}({{t}_{1}}) = {{\delta }_{n}}({{t}_{2}}) = 0, $$
(1.1)

Where δn is the virtual displacement of fluid flow boundary ∂Ω, the integral represents the work of the force of fluid pressure p on the displacement δn, L is the functional of the boundary and the normal velocity (the Lagrange function).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lamb H. Hydrodynamics, Cambridge (1932).

    Google Scholar 

  2. Petrov A.G. Hamilton’s principle and certain problems of dynamics of perfect fluid. PMM, vol.47, N 1(1986), pp.30–36.

    Google Scholar 

  3. Petrov A.G. Curvilinear motion of ellipsoidal bubble. Zh.Prikl.Mekh.Tekh.Fiz., N 3 (1971).

    Google Scholar 

  4. Voinov O.V., Petrov A.G. The Lagrange function of a gas bubble in an inhomogeneous stream. Dokl.Akad.Nauk SSSR, vol.210, N 5 (1973).

    Google Scholar 

  5. Petrov A.G. Stability of the equilibrium shape of a gas bubble in a homogeneous ideal fluid stream. Zh. Prikl. Mekh. Tekh. Fiz., N 5 (1974).

    Google Scholar 

  6. Likhomanov N.I., Petrov A.G. Plane parallel flow around a gas cavity. Izv.Akad.Nauk SSSR, MZhG, N 5 (1975), pp.725–730.

    Google Scholar 

  7. Petrov A.G. Dynamics of a plane cavity in a low viscosity fluid. Izv. Akad. Nauk SSSR, MZhG, N 5 (1973).

    Google Scholar 

  8. Petrov A.G. Drag force acting on an axisymmetric thin body at low cavitation numbers. Dokl.Akad.Nauk SSSR 282 (1985), pp.543–455.

    Google Scholar 

  9. Petrov A.G., Smolyanin V.G. Hamilton’s principle and waves on the surface of the liquid. Mekh. Sovremen. Problem, 1987.

    Google Scholar 

  10. Petrov A.G. The Lagrange function for vortex flows and dynamics of deformed drops. PMM, vol.41 (1977), pp.72–86.

    Google Scholar 

  11. Petrov A.G. Reactions for a small body in vortex plane parallel stream. Dokl.Akad.Nauk SSSR, vol. 238 (1978).

    Google Scholar 

  12. Petrov A.G. On the motion of Golfstream rings. Okeanovedenie, vol.20, N 6 (1980).

    Google Scholar 

  13. Perepelkin V.V., Petrov A.G. Dynamics of an elliptic vortex. Izv. Akad. Nauk SSSR, N 4 (1983), pp.539–544.

    Google Scholar 

  14. Petrov A.G., Sotina N.B. Universal, cavity shape-independent relation for cavitation flow with small cavitation numbers. Zh. Prikl. Mekh. Tekh. Fiz., N 5 (1983), pp.758–766.

    Google Scholar 

  15. Petrov A.G., Smolyanin V.G. Calculation of the profile gravity-capillary wave on the surface of the heavy liquid of finite depth. Vestnik MGU, Math., Mech., N 2, 1991.

    Google Scholar 

  16. Petrov A.G., Tshuvashov A.N. On the wave on the boundary separating two flows of heavy perfect liquid. PMM, vol.52, N 4, 1991.

    Google Scholar 

  17. Petrov A.G. Rate of dissipation of the energy of a viscous fluid with a condition for the shear stress on the boundary streamline. Sov.Phys.Dokl. 34(2), 1989, pp.101–103.

    Google Scholar 

  18. Petrov A.G. Circulation inside viscous deformed drops moving in gas with uniform velocity. Zh.Prikl.Mekh.Tekh.Fiz., N 6 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Basel AG

About this chapter

Cite this chapter

Petrov, A.G. (1992). Incompressible Fluid Flows with Free Boundary and the Methods for their Research. In: Antontsev, S.N., Khludnev, A.M., Hoffmann, KH. (eds) Free Boundary Problems in Continuum Mechanics. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, vol 106. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8627-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8627-7_28

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9705-1

  • Online ISBN: 978-3-0348-8627-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics