Skip to main content

Abstract

The retina forms a multilayered precortical structure which collects and preprocesses the information that reaches the visual cortex. To simulate neural network computation by the analog VLSI implementation technology, an analog model of the first stages of retinal processing has been constructed on a single silicon chip by CMOS VLSI circuitry and applied to machine vision. The purpose of this paper is to study the exactly solvable hexagonal resistive networks which model the horizontal cell layer of the retina. An overview of free-space multilayer architectures of hybrid optoelectronic interconnection networks is also given. It is shown that the shift register stage used in the horizontal and vertical scanner of the silicon retina implementation is in correspondence to the S-SEED technology in the hybrid optoelectronic implementation of interconnection networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, T., C. Mead, F. Faggin, and G. Gribble, Orientation selective VLSI retina, in Visual Communications and Image Processing’ 88, T. Russell Hsing (ed.), Proc. SPIE 101, 1988, 1040–1046.

    Google Scholar 

  2. Chirovsky, L. M. F., M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, G.J. Przybylek, L. E. Smith, L. A. D’Asaro, A. L. Lentine, R. A. Novotny, and D. B. Buchholz, Large arrays of symmetric self-electro-optic effect devices, OSA Proc. on Photonic Switching, Vol. 8, H. S. Hinton and J. W. Goodman (eds.), 1991, 56–59.

    Google Scholar 

  3. Engel, A. K., P. König, A. K. Kreiter, C. M. Gray, and W. Singer, Temporal coding by coherent oscillations as a potential solution to the binding problem, in Physiological evidence. Nonlinear Dynamics and Neuronal Networks, H. G. Schuster (ed.), VCH Publishers, Weinheim, New York, Basel, Cambridge, 1991, 3–25.

    Google Scholar 

  4. Feinstein, D.I., The hexagonal resistive network and the circular approximation, Caltech Computer Science Technical Report Caltech-CS-TR-88-7. Computer Science Department, California Institute of Technology, 1988.

    Google Scholar 

  5. Eckhorn, R., P. Dicke, W. Kruse, and H. J. Reitboeck, Stimulus-related facilitation and synchronization among visual cortical areas, in Experiments and models. Nonlinear Dynamics and Neuronal Networks, H. G. Schuster (ed.), VCH Publishers, Weinheim, New York, Basel, Cambridge, 1991, 57–75.

    Google Scholar 

  6. Eckhorn, R., H. J. Reitboeck, M. Arndt, and P. Dicke, Feature linking via stimulus-Evoked oscillations: Experimental results from cat visual cortex and functional implications from a network model, in International Joint Conference on Neural Networks, Vol. I, IEEE/INNS Washington D.C., 1989, 723–730.

    Article  Google Scholar 

  7. Freeman, W. J., What are the state variables for modeling brain dynamics with neural networks?, in Nonlinear Dynamics and Neuronal Networks, H. G. Schuster (ed.), VCH Publishers, Weinheim, New York, Basel, Cambridge, 1991, 243–255.

    Google Scholar 

  8. Gray, C. M., A. K. Engel, P. König, and W. Singer, Temporal properties of synchronous oscillatory neuronal interactions in cat striate cortex, in Nonlinear Dynamics and Neuronal Networks, H. G. Schuster (ed.), VCH Publishers, Weinheim, New York, Basel, Cambridge, 1991, 27–55.

    Google Scholar 

  9. Grinvald, A., Real-time optical mapping of neuronal activity, Ann Rev. Neurosci. 8 (1985), 263–305.

    Article  Google Scholar 

  10. Grossberg, S., and D. Somers, Synchronized oscillations during cooperative feature linking in a cortical model of visual perception, Neural Networks 4 (1991), 453–466.

    Article  Google Scholar 

  11. Harris, J., C. Koch, J. Luo, and J. Wyatt, Resistive fuses: Analog hardware for detecting discontinuities in early vision, in Analog VLSI Implementation of Neural Systems, C. Mead and M. Ismail (eds.), Kluwer Academic Publishers, Boston, Dordrecht, London, 1989.

    Google Scholar 

  12. Mead, C. A., and M. A. Mahowald, A silicon model of early visual processing, Neural Networks 1 (1988), 91–97.

    Article  Google Scholar 

  13. Mead, C., Analog VLSI and Neural Systems, Addison-Wesley, Reading, MA, 1989.

    Book  Google Scholar 

  14. Mead, C., Adaptive retina, in Analog VLSI Implementation of Neural Systems, C. Mead and M. Ismail (eds.), Kluwer Academic Publishers, Boston, Dordrecht, London, 1989, 239–246.

    Chapter  Google Scholar 

  15. Miller, D. A. B., Quantum-well self-electro-optic effect devices, Optical and Quantum Electronics 22 (1990), S61–S98.

    Article  Google Scholar 

  16. Pribram, K. H., Prolegomenon for a holonomic brain theory, in Synergetics of Cognition, H. Haken and M. Stadler (eds.), Springer-Verlag, Berlin, Heidelberg, New York, 1990, 150–184.

    Chapter  Google Scholar 

  17. Pribram, K. H., Brain and Perception: Holonomy and Structure in Figural Processing, Lawrence Erlbaum, Publishers, Hillsdale, NJ, 1991.

    Google Scholar 

  18. Pribram, K. H., and W. Schempp, The dendritic membrane as a linear metaplectic manifold, to appear.

    Google Scholar 

  19. Reitboeck, H. J., R. Eckhorn, M. Arndt, and P. Dicke, A model for feature linking via correlated neural activity, in Synergetics of Cognition, H. Haken and M. Stadler (eds.), Springer-Verlag, Berlin, Heidelberg, New York, 1990, 112–125.

    Chapter  Google Scholar 

  20. Schempp, W., Harmonic analysis on the Heisenberg nilpotent Lie group, with applications to signal theory, Pitman Research Notes in Math., Vol. 147, Longman Scientific and Technical, Harlow, Essex, 1986.

    Google Scholar 

  21. Schempp, W., Bohr’s indeterminacy principle in quantum holography, self-adaptive neural networks, cortical self-organization, molecular computers, magnetic resonance imaging, and solitonic nanotechnology, in Nonlinear Image Processing III, E. R. Dougherty, J. Astola, and C. G. Boncelet, Jr., (eds.), Proc. SPIE 1658, 1992, 297–343.

    Google Scholar 

  22. Schillen, T. B., and P. König, Temporal coding by coherent oscillation as a potential solution to the binding problem, in Nonlinear Dynamics and Neuronal Networks, H. G. Schuster (ed.), VCH Publishers, Weinheim, New York, Basel, Cambridge, 1991, 153–171.

    Google Scholar 

  23. Singer, W., Search for coherence: A basic principle of cortical self-organization, Concepts Neurosci. 1 (1990), 1–26.

    Article  Google Scholar 

  24. Singer, W., C. Gray, A. Engel, P. König, A. Artola, and S. Bröcher, Formation of cortical cell assemblies, in Cold Spring Harbor Symposium on Quantitative Biology, Vol 55, 1990, 939–952.

    Article  Google Scholar 

  25. Sompolinsky, H., D. Golomb, and D. Kleinfeld, Phase coherence and computation in a neural network of coupled oscillators, in Nonlinear Dynamics and Neuronal Networks, H. G. Schuster (ed.), VCH Publishers, Weinheim, New York, Basel, Cambridge, 1991, 113–130.

    Google Scholar 

  26. Sporns, O., G. Tononi, and G. M. Edelmann, Dynamic interactions of neuronal groups and the problem of cortical integration, in Nonlinear Dynamics and Neuronal Networks, H. G. Schuster (ed.), VCH Publishers, Weinheim, New York, Basel, Cambridge, 1991, 205–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Lothar Collatz

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Basel AG

About this chapter

Cite this chapter

Schempp, W. (1992). Analog VLSI Networks. In: Braess, D., Schumaker, L.L. (eds) Numerical Methods in Approximation Theory, Vol. 9. ISNM 105: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, vol 105. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8619-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8619-2_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9702-0

  • Online ISBN: 978-3-0348-8619-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics