Skip to main content

Part of the book series: DMV Seminar ((OWS,volume 17))

Abstract

Let F(x) be a real function defined on ℝk or a subset of it. In this part we will consider the optimization problem \((P)\parallel \begin{array}{*{20}c} {F(x) = \min !} \\ {x \in S} \\ \end{array}\)where S \(\subseteq \)k is a set of constraints. Any point x* which is the solution of (P) is called a global minimizer of F on S. If there is an open set U such that a point x 0 is the solution of \((P)\parallel \begin{array}{*{20}c} {F(x) = \min !} \\ {x \in S \cap U} \\ \end{array}\) then x 0 is called a local minimizer of F on S. In general, for deterministic procedures which use the gradient f(x) of F(x), only convergence to the set of critical points x: f(x) = 0} can be proved. There are however tricky deterministic methods which avoid convergence to non-global minimizers (Dixon and Szegö 1975; Ge 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chiang T.S., Hwang C.R., Sheu S.J. (1987) Diffusions for global optimization in ℝn. SIAM J. Control Optim., Vol. 25, 737–752.

    Article  MathSciNet  MATH  Google Scholar 

  • Chow Y., Robbins H. (1965). On the asymptotic theory of fixed-width sequential confidence intervals. Ann. Math. Statist., Vol. 36, 457–462.

    Article  MathSciNet  MATH  Google Scholar 

  • Chung K.L. (1954). On a stochastic approximation method. Ann. Math. Statist., Vol. 25, 463–483.

    Article  MATH  Google Scholar 

  • David (1970). Order statistics. J. Wiley and Sons, New York.

    MATH  Google Scholar 

  • Dekker A., Aarts E. (1991). Global optimization and simulated annealing. Math. Programming, Vol. 50, 367–393.

    Article  MathSciNet  Google Scholar 

  • Dixon L., Szegö G. (1975). Towards Global Optimization. North Holland, Amsterdam.

    Google Scholar 

  • Fabian V. (1968). On asymptotic normality in stochastic approximation. Ann. Statist., Vol. 39, 1327–1332.

    Article  MathSciNet  MATH  Google Scholar 

  • Fabian V. (1978). On asymptotically efficient recursive estimation. Ann. Statist., Vol. 6., No 4, 854–856.

    Article  MathSciNet  MATH  Google Scholar 

  • Farell R.H. (1962). Bounded length confidence intervals for the zero of a regression function. Ann. Math. Statist., Vol. 33, 237–247.

    Article  MathSciNet  Google Scholar 

  • Fedorov V. (1972). Theory of optimal experiment. Academic press, New York.

    Google Scholar 

  • Föllmer H. (1988). Random Fields and Diffusion Processes. Ecole dďété de probabilité de St.-Flour XV-XVII, Springer Lecture Notes 1362.

    Google Scholar 

  • Gelfand S.B., Mitter S.K. (1991). Recursive stochastic algorithms for global optimization in ℝd. SIAM J. Control, Vol. 29, No. 5, 999–1018.

    Article  MathSciNet  MATH  Google Scholar 

  • Ge Renpu (1990). A filled function method for finding a global minimizer of a function of several variables. Math. Progr. Vol. 46.

    Google Scholar 

  • Geman S., Hwang C.R. (1986). Diffusions for global optimization. Siam J. Control and Optimization, Vol. 34, No. 3, 1031–1036.

    Article  MathSciNet  Google Scholar 

  • Gihman J., Skorohod A. (1968). Stochastic differential equations. Kiev: Nauk. dumka (in Russian)

    Google Scholar 

  • Graham A. (1981). Kronecker procucts and matrix calculus. Ellis Horwood.

    Google Scholar 

  • Heyde C.C. (1974). On martingale limit theory and strong convergence results for stochastic approximation procedures. Stoch. Proc. and Appl., Vol. 2, 359–370.

    Article  MathSciNet  MATH  Google Scholar 

  • Högnäs G. (1986). Comparison for some nonlinear autoregressive processes. J. Time Series Analysis, Vol. 7., No. 3, pp. 205–211.

    Article  MATH  Google Scholar 

  • Hwang C.R. (1980). Laplace’s method revisited: weak convergence of probability measures. Ann Probab., Vol. 8, 1177–1182.

    Article  MathSciNet  MATH  Google Scholar 

  • Karlin S., Taylor H. (1981). A second course in stochastic processes. Academic press, New York.

    MATH  Google Scholar 

  • Kersting G.D. (1977). Some results on the asymptotic behavior of the Robbins-Monro procedure. Bull. Int. Stat. Inst., Vol. 47, 327–335.

    MathSciNet  MATH  Google Scholar 

  • Kersting G.D. (1978). A weak convergence theorem with application to the Robbins-Monro process. Ann. Prob., Vol. 6., No. 6, 1015–1025.

    Article  MathSciNet  MATH  Google Scholar 

  • Kushner H., Hai-Huang (1981). Asymptotic properties of stochastic approximation with constant coefficients. SIAM J. Control Vol. 19, 87–105.

    Article  MATH  Google Scholar 

  • Kushner H. (1987). Asymptotic global behavior for stochastic approximation and diffusions with slowly decreasing noise effects: global minimization via Monte Carlo. Siam J. Appl. Math., Vol. 47, No. 1, 169–185.

    Article  MathSciNet  MATH  Google Scholar 

  • Major P., Revesz P. (1973). A limit theorem for the Robbims-Monro approximation. Z. Wahrscheinlichkeitstheorie verw. Geb., Vol. 27, 79–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Marti K. (1980). On Accelerations of the Convergence in Random Search Methods. Meth. Oper. Res., Vol. 37, 391–406.

    MATH  Google Scholar 

  • Marti K. (1992). Semi-Stochastic Approximation by the Response Surface Methodology. Optimization.

    Google Scholar 

  • Matyas J. (1965). Random Optimization. Automation and Remote Control, Vol. 26, 246–253.

    MathSciNet  Google Scholar 

  • V.Mises R., Pollaczek-Geiringer H (1929). Praktische Verfahren der Gleichungsauflösung. Z. angew. Math. Mech. Vol. 9, 58–77.

    Article  Google Scholar 

  • Nevelľson M.B., Hasminskij R.S. (1972). Stochastic approximation and recurrent estimation. Nauka, Moskwa (in Russian). Translated in Amer. Math. Soc. Transi. Monographs, Vol.24, Providence, R.I.

    Google Scholar 

  • Neveu J. (1974). Discrete Parameter Martingales. North Holland, Amseterdam.

    Google Scholar 

  • Pflug G. (1986). Stochastic optimization with constant step-size. Asymptotic laws. SIAM J. of Control, Vol. 24, No. 4, 655–666.

    Article  MathSciNet  MATH  Google Scholar 

  • Pflug G. (1988). Stepsize rules, stopping times and their implementation in stochastic quasigradient algorithms. In: Numerical Techniques for Stoch. Optimization (Y. Ermoliev, R. Wets eds.), Springer Series in Computational Mathematics.

    Google Scholar 

  • Pflug G. (1989). Sampling derivatives of probability measures. Computing, Vol. 42, 315–328.

    Article  MathSciNet  MATH  Google Scholar 

  • Pflug G. (1990). Non-asymptotic Confidence Bounds for Stochastic Approximation Algorithms with Constant Step Size. Monatsh. Math., Vol. 110, 297–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Pflug G. (1991). A note on the comparison of stationary laws of Markovian processes. Statistics and Probability Letters, Vol. 11, No. 4, 331–334.

    Article  MathSciNet  MATH  Google Scholar 

  • Pflug G. (1992). Gradient estimates for the performance of Markov Chains and Discrete Event Processes. to appear in: Annals of OR.

    Google Scholar 

  • Pflug G. Ch., Schachermayer W. (1992). Cofficients of ergodicity for stochastically monotone Markov Chains. to appear in: Advances of Applied Probability.

    Google Scholar 

  • Polyak B. (1991). Novi metod tipa stochasticekoi approksmacii. Automatika i Telemechanika No.7, 98–107 (in Russian).

    Google Scholar 

  • Rachev S.T. (1984). The Monge-Kantorovich mass transformation problem and its stochastic applications. Theory of Probability and its Applications, Vol. 29, No. 4, 647–676.

    Article  MathSciNet  Google Scholar 

  • Revuz D. (1975). Markov Chains. North Holland Publ. Comp. Amsterdam.

    Google Scholar 

  • Robbins H., Monro S. (1971). A stochastic approximation method. Ann. Math. Statist., Vol. 22, 400–407.

    Article  MathSciNet  Google Scholar 

  • Robbins H., Siegmund D. (1971). A convergence theorem for nonnegative almost supermartingales and some applications. Optimizing methods in Statistics, ed. by J.S. Rustagi. Academic Press, New York, 233–257.

    Google Scholar 

  • Rubinstein R. (1986). The score function approach for sensitivity analysis of computer simulation models. Mathematics and Computers in Simulation, Vol. 28, 351–379.

    Article  MATH  Google Scholar 

  • Sielken R.L. (1973). Some stopping rule for stochastic approximation procedures. Z. Wahrscheinlichkeitstheorie verw. Geb., Vol. 27, 79–86.

    Article  Google Scholar 

  • Solis F., Wets R. (1981). Minimization by random search techniques. Mathematics of Operations Research, Vol. 6, No. 1, 19–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Strassen V. (1965). The existence of probability measures with given martin-gals. Ann. Math. Statist., Vol. 36, 423–439.

    Article  MathSciNet  MATH  Google Scholar 

  • Stroup D.F., Braun H.I. (1982). A new stopping rule for stochastic approximation. Z. Wahrscheinlichkeitstheorie verw. Geb., Vol. 60, 535–554.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Basel AG

About this chapter

Cite this chapter

Pflug, G. (1992). Applicational aspects of stochastic approximation. In: Stochastic Approximation and Optimization of Random Systems. DMV Seminar, vol 17. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8609-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8609-3_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2733-0

  • Online ISBN: 978-3-0348-8609-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics