Skip to main content

Direct Numerical Simulations and Hot Wire Experiments : A Possible Way Ahead?

  • Conference paper

Part of the book series: Monte Verità ((MV))

Abstract

Direct numerical simulations have contributed significantly to the study of the physics of turbulence and to turbulence modelling, albeit at low Reynolds numbers. Hot wire experiments should continue to play a useful part in providing data at higher Reynolds numbers but it is important that their limitations are realised. To this end, hot wire measurements in a fully developed turbulent duct flow have been compared with other types of measurements as well as direct numerical simulations for the same flow and comparable Reynolds numbers. Preliminary hot wire measurements of spatial velocity derivatives in a turbulent channel flow show encouraging agreement with the simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonia, R. A., Anselmet, F. and Chambers, A. J. (1986), Assessment of Local Isotropy Using Measurements in a Turbulent Plane Jet, J. Fluid Mech., 163, 365–391.

    Article  Google Scholar 

  • Antonia, R. A., Browne, L. W. B. and Chambers, A. J. (1984), On the Spectrum of the Transverse Derivative of the Streamwise Velocity in a Turbulent Flow, Phys. Fluids, 27, 2628–2631.

    Article  MATH  Google Scholar 

  • Antonia, R. A., Browne, L. W. B., and Kim, J. (1991), Some Characteristics of Small Scale Turbulence in a Turbulent Duct Flow, J. Fluid Mech., 233, 369–388.

    Article  MATH  Google Scholar 

  • Antonia, R. A., Browne, L. W. B. and Shah, D. A. (1988), Characteristics of Vorticity Fluctuations in a Turbulent Wake, J. Fluid Mech., 189, 349–365.

    Article  Google Scholar 

  • Antonia, R. A. and Mi, J. (1991), Corrections for Velocity and Temperature Derivatives in Turbulent Flows, Expts. in Fluids [submitted]

    Google Scholar 

  • Antonia, R. A., Shah, D. A. and Browne, L. W. B. (1987), Spectra of Velocity Derivatives in a Turbulent Wake, Phys. Fluids, 30, 3455–3462.

    Article  Google Scholar 

  • Antonia, R. A., Teitel, M., Kim, J. and Browne, L. W. B. (1992), Low Reynolds Number Effects in a Fully Developed Turbulent Duct Flow, J. Fluid Mech., [to appear].

    Google Scholar 

  • Balint, J-L., Wallace, J. M. and Vukoslavcevic, P. (1991), The Velocity and Vorticity Vector Fields of a Turbulent Boundary Layer. Part 2. Statistical Properties, J. Fluid Mech., 228, 53–86.

    Google Scholar 

  • Bradshaw, P. (1967), “Inactive” Motion and Pressure Fluctuations in Turbulent Boundary Layers, J. Fluid Mech., 30, 241–258.

    Article  Google Scholar 

  • Dracos, T., Kholmyansky, M., Kit, E. and Tsinober, A. (1990), Some Experimental Results on Velocity-Velocity Gradient Measurements in Turbulent Grid Flows, in K. H. Moffatt and A. Tsinober eds. Topological Fluid Mechanics, Cambridge, C.U.P. [to appear]

    Google Scholar 

  • Eckelmann, H. (1974), The Structure of the Viscous Sublayer and the Adjacent Wall Region in a Turbulent Channel Flow, J. Fluid Mech., 65, 439.

    Article  Google Scholar 

  • George, W. K. and Hussein, H. J. (1991), Locally Axisymmetric Turbulence, J. Fluid Mech. [to appear]

    Google Scholar 

  • Hishida, M., Nagano, Y. and Tagawa, M. (1986), Transport Processes of Heat and Momentum in the Wall Region of Turbulent Pipe Flow, Proc. Eighth International Heat Transfer Conference, San Francisco, Vol. 3, 925–930.

    Google Scholar 

  • Kasagi, N., Tomita, Y. and Kuroda, A. (1991), Direct Numerical Simulation of the Passive Scalar Field in a Two-Dimensional Channel Flow, Proc. Third ASME-JSME Thermal Engineering Joint Conference, Reno.

    Google Scholar 

  • Kim, J. (1989), On the Structure of Pressure Fluctuations in Simulated Turbulent Channel Flow, J. Fluid Mech., 205, 421–451.

    Article  Google Scholar 

  • Kim, J. and Moin, P. (1989), Transport of Passive Scalars in a Turbulent Channel Flow, in Turbulent Shear Flows 6, Berlin, Springer, 85–96.

    Chapter  Google Scholar 

  • Kim, J., Moin, P. and Moser, R. (1987), Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number, J. Fluid Mech., 177, 133–166.

    Article  MATH  Google Scholar 

  • Kreplin, H. and Eckelmann, H. (1979), Behavior of the Three Fluctuating Velocity Components in the Wall Region of a Turbulent Channel Flow, Phys. Fluids, 22, 1233.

    Article  Google Scholar 

  • Kuroda, A., Kasago, N. and Hirata, M. (1989), A Direct Numerical Simulation of the Fully Developed Turbulent Channel Flow at a Very Low Reynolds Number, Proc. ISCFD, Nagoya, 1174–1179.

    Google Scholar 

  • Liu, Z-C, Landreth, C. C, Adrian, R. J. and Hanratty, T. J. (1991), High Resolution Measurements of Turbulent Structure in a Channel with Particle Image Velocime-try, Expts. in Fluids, 10, 301–312.

    Article  Google Scholar 

  • Lyons, S. L., Hanratty, T. J. and McLaughlin, J. B. (1989), Turbulence-Producing Eddies in the Viscous Wall Region, AIChE Jnl., 35, 1962–1974.

    Article  Google Scholar 

  • Lyons, S. L., Hanratty, T. J. and McLaughlin, J. B. (1991), Direct Numerical Simulation of Passive Heat Transfer in a Turbulent Channel Flow, Int. J. Heat Mass Transfer, 34, 1149–1162.

    Article  Google Scholar 

  • Mansour, N. N. (1991), The Use of Direct Numerical Simulation in Turbulence Modelling, Paper AIAA-91-0221, presented at 29th Aerospace Sciences Meeting, Nevada.

    Google Scholar 

  • Mestayer, P. and Chambaud, P. (1979), Some Limitation to Measurements of Turbulence Micro-Structure with Hot-and Cold-Wires, Boundary-Layer Meteorol., 16, 311–329.

    Article  Google Scholar 

  • Moin, P. and Spalart, P. R. (1989), Contributions of Numerical Simulation Data Bases to the Physics, Modeling and Measurement of Turbulence, in W. K. George and R. Arndt (eds.) Advances in Turbulence, New York, Hemisphere, 11–38.

    Google Scholar 

  • Niederschulte, M. A., Adrian, R. J. and Hanratty, T. J. (1990), Measurements of Turbulent Flow in a Channel at Low Reynolds Numbers, Expts. in Fluids, 9, 222–230.

    Article  Google Scholar 

  • Nishino, K. and Kasagi, N. (1989), Turbulence Statistics Measurement in a Two-Dimensional Channel Flow Using a Three-Dimensional Particle Tracking Velocimeter, Proc. Seventh Symposium on Turbulent Shear Flows, Stanford, CA, 22.1.1–22.1.6.

    Google Scholar 

  • Robinson, S. K., Kline, S. J. and Spalart, P. R. (1990), Quasi-Coherent Structures in the Turbulent Boundary Layer. Part II: Verification and New Information from a Numerically Simulated Flat-Plate Layer, in S. J. Kline and N. H. Afgan (eds.) Near Wall Turbulence, New York, Hemisphere, 218–247.

    Google Scholar 

  • Spalart, P. R. (1988), Direct Simulation of a Turbulent Boundary Layer up to R θ = 1410, J. Fluid Mech., 187, 61–98.

    Article  MATH  Google Scholar 

  • Suzuki, Y. and Kasago, N. (1990), Evaluation of Hot-Wire Measurements in Turbulent Wall Shear Flows Using a Direct Numerical Simulation Data Base, in W. Rodi and E. N. Ganic (eds.) Engineering Turbulence Modelling and Experiments, New York, Elsevier, 361–370.

    Google Scholar 

  • Teitel, M. and Antonia, R. A. (1991), Heat Transfer in Fully Developed Turbulent Channel Flow: Comparison Between Experiment and Direct Numerical Simulations, Int. J. Heat Mass Transfer, (submitted)

    Google Scholar 

  • Townsend, A. A. (1961), Equilibrium Layers and Wall Turbulence, J. Fluid Mech., 11, 97–120.

    Article  MATH  MathSciNet  Google Scholar 

  • Wei, T. and Willmarth, W. W. (1989), Reynolds-Number Effects on the Structure of a Turbulent Channel Flow, J. Fluid Mech., 204, 57–95.

    Article  Google Scholar 

  • Wyngaard, J. C. (1969), Spatial Resolution of the Vorticity Meter and Other Hot-Wire Arrays, J. Sci. Instrum, 2, 983–987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this paper

Cite this paper

Antonia, R.A. (1993). Direct Numerical Simulations and Hot Wire Experiments : A Possible Way Ahead?. In: Dracos, T., Tsinober, A. (eds) New Approaches and Concepts in Turbulence. Monte Verità. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8585-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8585-0_20

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9691-7

  • Online ISBN: 978-3-0348-8585-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics