Skip to main content

Structural Optimization

A Survey

  • Chapter

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 110))

Abstract

This article is addressed to beginners as well as to advanced students in the recently established discipline of structural optimization. Structural optimization is not a theory of its own, but it makes extensive use of theoretical results from several research disciplines. Mechanical engineering and mathematical programming theory is necessary to develop a programming system for structural optimization. Some mechanical engineering background is essential to realize the formulation of the design problem. To understand how to set up the design model the user will be guided carefully from a simple example to the important class of displacement related constraints. Furthermore a brief discription of more general design problems is given to introduce the scope of mechanical fields that can be managed by the tools of structural optimization. The consideration of the common mathematical formulation of all kinds of problems leads to a simultaneous solution process. Both the classical Optimality Criteria (OC) approach as well as the use of Mathematical Programming (MP) algorithms can be seen as an attempt to solve the dual problem formulation. Not only the age-old polemical dispute between the OC and MP school of thought can be saddled by understanding the duality in structural design, but also the Sequential Convex Programming (SCP) technique can be deduced from it. Finally, ideas are presented how to exploit some special mathematical properties in the design formulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bartholomew: A dual bound used for monitoring structural optimization programs, J. Engineering Optimization, Vol. 4, pp. 45–50, 1979.

    Article  Google Scholar 

  2. A.D. Belegundu and J.S. Arora: A computational study of transformation methods for optimal design, AIAA J., Vol. 22, No. 4, pp. 535–542, 1984.

    Article  Google Scholar 

  3. A.D. Belegundu and J.S. Arora: A study of mathematical programming methods for structural optimization. Part I: Theory / Part II: Numerical results, Int. Jour. Num. Meth. Engrg., Vol. 21, pp. 1583–1599 / pp. 1601–1623, 1985.

    Google Scholar 

  4. M.P. Bendsøe and N. Kikuchi: Generating optimal topologies in structural design using a homogenization method, Comp. Meths. Appl. Mech. Engrg., Vol. 71, pp. 197–224, 1988.

    Article  Google Scholar 

  5. M.P. Bendsøe: Optimal shape design as a material distribution problem, Structural Optimization, Vol. 1(4), pp. 193–202, 1989.

    Article  Google Scholar 

  6. M.P. Bendsøe: Optimisation topologique, Lecture Notes, COMETT Seminar on Conception optimale de structures assistée par ordinateur, Nice, France, July 13–17, 1992, writen in english.

    Google Scholar 

  7. L. Berke and V.B. Venkayya: Review of optimality criteria approaches to structural optwiization, ASME Struct. Opt. Symp., pp. 22–34, 1984.

    Google Scholar 

  8. M.E. Botkin and J.A. Bennett: Shape optimization of three-dimensional folded plate structures, AIAA J., Vol. 23, No. 11, pp. 1804–1810, 1984.

    Article  Google Scholar 

  9. D.G. Carmichael: Chapter 10 in Structural modelling and optimization a general methodology for engineering and control, Ellis Horwood Ltd., Series in Civil Engineering, 1981.

    Google Scholar 

  10. W.S. Dorn, R.E. Gomory and H.J. Greenberg: Automated design of optimal structures, Jur. de Mecanique, Vol. 3, No. 1, pp. 25–52, 1964.

    Google Scholar 

  11. H. Eschenauer et al.: Rechnerische und experimentelle Untersuchungen zur Strukturoptimierung von Bauweisen, Forschungsbericht der DFG des Inst. für Mechanik und Regelungstechnik der Univ. Ges. Hochschule Siegen, pp. 9–12, 1985.

    Google Scholar 

  12. B.J.D. Esping: CAD Approach to the minimum weight design problem, Report 83-14, Royal Inst. of Techn. Stockholm, Sweden, 1983.

    Google Scholar 

  13. C. Fleury: Structural weight optimization by dual methods of convex programming, Int. Jour. Num. Meth. Engrg., Vol. 14, pp. 1761–1783, 1979.

    Article  Google Scholar 

  14. C. Fleury: Shape optimal design by the convex linearization method, Int. Symp. The optimum shape: Automated structural design, Warren, Michigan.

    Google Scholar 

  15. C. Fleury: Computer aided optimal design of elstic structures; Part II: Convex approximation strategies in structural synthesis, in Computer Aided Optimal Design: Structural and Mechanical Systems, edited by C.A. Mota Soares, NATO ASI, Series F, Vol. 27, Springer—Verlag 1986, ISBN 3-540-17598-9.

    Google Scholar 

  16. C. Flemy: First and second order convex approximation strategies in structural optimization, Structural Optimization, Vol. 1(1), pp. 1–10, 1989.

    Article  Google Scholar 

  17. C. Fleury: CONLIN: an efficient dual optimizer based on convex approximation concepts, Structural Optimization, Vol. 1(2), pp. 81–89, 1989.

    Article  Google Scholar 

  18. C. Fleury and V. Braibant: Structural optimizationa new dual method using mixed variables, Int. Jour. Num. Meth. Engrg., Vol. 23, pp. 409–428, 1986.

    Article  Google Scholar 

  19. R.T. Haftka and H.M. Adelman;, Recent developments in structural sensitivity analysis, Structural Optimization, Vol. 1(3), pp. 137–151, 1989.

    Article  Google Scholar 

  20. R.T. Haftka and B. Barthelemy: On the accuracy of shape sensitivity, Structural Optimization, Vol. 3(1), pp. 1–6, 1991.

    Article  Google Scholar 

  21. W.S. Hemp: Studies in the theory of Michell structures, Proc. Int. Congr., Appl. Mech., München, 1964.

    Google Scholar 

  22. O.F. Hughes, F. Mistree and V. Zanic: A practical method for rational design of ship structures, J. Ship Res., Vol. 24, No. 2, pp. 101–113, 1980.

    Google Scholar 

  23. N. Kikuchi and K. Suzuki: Structural optimization of a linearly elastic structure using the homogenization method, In: Composite Media and Homoge-nization Theory, edited by G. Dal Masso and C.F. Dell Antonio, pp. 183–204, Birkhäuser Verlag, Boston, 1991.

    Google Scholar 

  24. F.A. Lootsma: A comparative study of primal and dual approaches for separable and partially-separable nonlinear optimization problems, Structural Optimization, Vol. 1(2), pp. 73–79, 1989.

    Article  Google Scholar 

  25. J.C. Maxwell: Scientific Papers, Vol. 2, p. 175, Cambridge Univ. Press, 1869.

    Google Scholar 

  26. A.G.M Michell: The limits of economy of material in frame structures, Philosophical Magazine, Series 6, Vol. 8, pp. 589–597, 1904.

    Google Scholar 

  27. J.M. Ortega and W.C. Rheinbold: Iterative solution of nonlinear equations in several variables, ACADEMIC PRESS, 1970.

    Google Scholar 

  28. P. Pedersen: Optimal joint positions for space trusses, Jour. of Struc. Div. ASCE, Vol. 99, No. 12, pp. 2459–2476, 1973.

    Google Scholar 

  29. B. Prasad: Potential forms of explicit constraint approximations in structural optimizationPart 1: Analysis and projections / Part 2: Numerical experience, Comp. Meth. Appl. Mech. Engrg., Vol. 40, pp. 1–26 /, Vol. 46, pp. 15–38, 1983.

    Article  Google Scholar 

  30. E. Sandgren and K.M. Ragsdell: The utility of nonlinear algorithms: A comparative study — Part 1 and Part 2, ASME J. Mech. Des., Vol. 102(3), pp. 540–551, 1980.

    Article  Google Scholar 

  31. K. Schittkowski: Nonlinear programming codes. Information, test, performance, Lecture Notes in Economics and Mathematical Systems, Springer Verlag, 1980.

    Google Scholar 

  32. L.A. Schmit and B. Farshi: Some approximation concepts for structural sythesis, AIAA Jour., Vol. 12, No. 5, pp. 692–699, 1974.

    Article  Google Scholar 

  33. L.A. Schmit and K.J. Chang: A multi-level method for structural synthesis, 25th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Material Conf., Palm Springs, 1984.

    Google Scholar 

  34. J. Sobieski, B.B. James and M.F. Riley: Structural optimization by generalized multilevel optimization, 26th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Material Conf., Orlando, Florida, 1984.

    Google Scholar 

  35. W. Stadler: Multicriteria optimization in mechanics — A survey-, Appl. Mech. Review, Vol. 37, No. 3, pp. 277–286, 1984.

    Google Scholar 

  36. J.H. Jr. Starnes and R.T. Haftka: Preliminary design of wings for buckling, stress and displacement constraints, Jour. Aircrafts, Vol. 16, pp. 564–570, 1979.

    Article  Google Scholar 

  37. J. Stoer: Duality in nonlinear programming and the minimax theorem, Numer. Math., Vol. 5, pp. 371–379

    Google Scholar 

  38. K. Suzuki and N. Kikuchi: Layout optimization using the homogenization method: Generalized layout design of three dimensional shells for car bodies, In: Optimization of large structural systems, edited by G.I.N. Rozvany, Lecture Notes, NATO ASI, Berchtesgaden, Vol. 3, pp. 110–126, FRG, 1991.

    Google Scholar 

  39. K. Svanberg: An algorithm for optimum structural design using duality, Math. Programming Study, Vol. 20, pp. 161–177, 1982.

    Google Scholar 

  40. K. Svanberg: On local and global minima in structural optimization, New Directions in Optimum Structural Design, edited by Atrek, Gallagher, Ragsdell and Zienkiewicz, John Wiley & Sons, 1984, ISBN 0-471-90291-8, pp. 327–341.

    Google Scholar 

  41. K. Svanberg: Method of moving asymptotesa new method for structural optimization, Int. Jour. Num. Meth. Engrg., Vol. 24, pp. 359–373, 1987.

    Article  Google Scholar 

  42. G.N. Vanderplaats and F. Moses: Automated design of trusses for optimum geometry, Jour. of Struc. Div. ASCE, Vol. 89, No. 6, pp. 671–690, 1972.

    Google Scholar 

  43. J. Werner: Optimization theory and applications, Vieweg Advanced Lectures in Mathematics, Verlag Friedr. Vieweg & Sohn, ISBN 3-528-08594-0.

    Google Scholar 

  44. P. Wolfe: A duality theorem for non-linear programming, Quart. Appl. Math., Vol. 19, pp. 239–244, 1961.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Hörnlein, H.R.E.M. (1993). Structural Optimization. In: Hörnlein, H.R.E.M., Schittkowski, K. (eds) Software Systems for Structural Optimization. International Series of Numerical Mathematics, vol 110. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8553-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8553-9_1

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-2836-8

  • Online ISBN: 978-3-0348-8553-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics