Skip to main content

The functional structure of the monodromy matrix for Harper’s equation

  • Chapter
Mathematical Results in Quantum Mechanics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 70))

Abstract

In this paper we continue our investigation of Harper’s equation:

$$ \frac{{\psi (x + h) + \psi (x - h)}}{2} + \cos \,x\;\psi (x) = E\psi (x). $$
((1.1))

Here h is a fixed positive parameter and x ∈ ℝ or x ∈ ℂ. This equation appeared as a model for Bloch electron in a weak constant magnetic field [Ho]. The structure of the spectrum σ h of Harper’s equation on L 2(ℝ) appeared to be very rich and Harper’s equation attracted the attention of both physicists and mathematicians, see, for example, [C-F-K-S].

The work was supported by the Russian Foundation of Fundamental Research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ya. Azbel, Energy spectrum of a conduction electron in a magnetic field. Soviet Physics JETP 19 No 3 (1964).

    Google Scholar 

  2. Cycon, R. Froese, W. Kirsch, B.Simon, Schrödinger operators. Springer-Verlag, 1987.

    Google Scholar 

  3. V. Buslaev, A. Fedotov, Complex WKB method for Harper’s equation. Reports of Mittag-Leffler Institute 11 (1993).

    Google Scholar 

  4. M. Fedoriouk, Méthodes asymptotiques pour les équations différentielles ordinaires lineares. MIR, Moscou, 1987.

    Google Scholar 

  5. D. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14 (1976), 2239–2249.

    Article  ADS  Google Scholar 

  6. B. Helffer, J. Sjöstrand, Analyse semi-classique pour l’équation de Harper (avec application a’l etude de l’equation de Schrödinger avec champ magnétique). Mémoires de la SMF 34 (1988).

    Google Scholar 

  7. B. Helffer, P. Kerdelhué, J. Sjöstrand, Le papillon de Hofstadter revisité. Mémoires de la SMF 43 (1990).

    Google Scholar 

  8. Y. Sibuya, Global theory of a second order linear ordinary differential equation with a polynomial coefficient. North-Holland, Amsterdam, 1975.

    Google Scholar 

  9. M. Wilkinson, Critical properties of electron eigenstates in incommensurate systems Proc. Royal Society of London. A 391 (1984), 305–350.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Buslaev, V., Fedotov, A. (1994). The functional structure of the monodromy matrix for Harper’s equation. In: Demuth, M., Exner, P., Neidhardt, H., Zagrebnov, V. (eds) Mathematical Results in Quantum Mechanics. Operator Theory: Advances and Applications, vol 70. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8545-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8545-4_38

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9673-3

  • Online ISBN: 978-3-0348-8545-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics