Skip to main content

A Trace Formula for Obstacles Problems and Applications

  • Chapter

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 70))

Abstract

We display here a new trace formula in scattering for obstacles problems. Applications are given for asymptotics of the scattering phase. In particular we prove a Weyl type formula for exterior problems in acoustical scattering for any dimension, extending a result proved by R. Melrose in odd dimension. More generally, we prove that theses results hold for a large class of perturbations of operators elliptic at infinity which may be degenerated in a bounded set.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Agmon: Asymptotic formulas with remainder estimates of eingenvalues of elliptic operators. Arch. Rational Mech. Anal. 28, 165–183, (1968).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. M.S. Baouendi et C. Goulaouic: Régularité et théorie spectrale pour une classe d’opérateurs elliptiques dégénérés. Arch. Rat. Mech. Anal., vol.34, 361–379, (1969).

    Article  Google Scholar 

  3. M.S. Birman and M.Z. Solomyak: Leading term in the asymptotic spectral formula for “nonsmooth” elliptic problems. Functonnal Anal. Appl. 4, 265–275 (1970).

    Article  MATH  Google Scholar 

  4. P. Bolley, J. Camus, Pham The Lai: Noyau, Résolvente et Valeurs propres d’une classe d’opérateurs elliptiques et dégénérés. Lecture Notes in Math. N 0 660 “Equations aux dérivées partielles” Proceedings, Saint Jean de Monts (1977).

    Google Scholar 

  5. C. Bardos, J.C. Guillot, J. Ralston: La relation de Poisson pour l’équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion. Comm. in P.D.E, 7(8), 905–958 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  6. V.S. Buslaev: On the asymptotic behaviour of the spectral caracteristics of exterior problems for the Schrödinger operator. Math.USSR Izvestija. Vol.9 N 0l (1975).

    Google Scholar 

  7. G. Grubb: Remarks on trace estimates for exterior boundary problems. Comm. in P.D.E, 9(3), 231–270 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Hörmander: The spectral function of an elliptic operator, Acta. Math. 121 (1968) 193–218.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Ivrii: Book in preparation and preprints of Ecole Polytechnique (1990–92).

    Google Scholar 

  10. A. Jensen, T. Kato: Asymptotic behaviour of the scattering phase for exterior domains. Comm. in P.D.E, 3(12), 1165–1195 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Kac: Can we hear the shape of a drum? American Math. Monthly, 73S, 1–23 (1966).

    Article  Google Scholar 

  12. P. Lax and R. Phillips: Scattering theory, Academic Press (1967).

    Google Scholar 

  13. A. Majda, J. Ralston: An analogue of Weyl’s formula for unbounded domains. Duke Math. J.; 45 183 (1978); 45 513 (1978); 46 725 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Melrose: Weyl’s conjecture for manifolds with concave boundary. Proc. Symp. on Pure Math. A.M.S, 257-273, (1980).

    Google Scholar 

  15. R. Melrose: Weyl asymptotics for the phase in obstacle scattering. Commun, in P.D.E, 13(11), (1988) 1431–1439.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Menikoff, J. Sjöstrand: On the eigenvalues of a class of hypoelliptic operators. Math. Ann. 235, 55–84, (1978).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Métivier: Valeurs propres de problèmes aux limites irréguliers. Bull. Soc. Math. France, mémoire 51-52, 125–219 (1977).

    Google Scholar 

  18. C. Nordin: The asymptotic distribution of the eigenvalues of a degenerate elliptic operator. Ark för Math., vol.10, 3–21, (1972).

    MathSciNet  ADS  Google Scholar 

  19. Pham The Lai: Comportement asymptotique du noyau de la résolvente et des valeurs propres d’une classe d’opérateurs elliptiques dégénérés non nécessairement auto-adjoint. J. Math, pures et appl., 55, 1–42, (1976).

    MathSciNet  Google Scholar 

  20. V. Petkov and G. Popov: Asymptotic behaviour of the scattering phase for non trapping obstacles. Ann. Inst. Fourier, Grenoble 32, 3, 111–149 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Popov: Asymptotic behaviour of the scattering phase for the Schrödinger operator. Publication of the Academy of Sciences Sofia-Bulgaria (1982).

    Google Scholar 

  22. M. Reed, B. Simon: Scattering theory. Academic Press (1979).

    Google Scholar 

  23. D. Robert: Asymptotique à grande énergie de la phase de diffusion pour un potentiel, Asymptotic Analysis 3, 301–320 (1991).

    MathSciNet  Google Scholar 

  24. D. Robert: Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du Laplacien. Ann.scient.Ec. Norm. Sup 4e série,t.25,1992, p.107 à 134.

    Google Scholar 

  25. D.Robert: Relative Time Delay and Trace Formula for Long Range perturbations of Laplace Operator. Operator Theory; Advances and Applications, Vol.57 (1992), Birkhäuser Verlag Basel.

    Google Scholar 

  26. R. Seeley: A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of ℝ3. Advances in Math. 29, 244–269 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Sjöstrand, M. Zworskii: Complex scaling and the distribution of scattering poles. J. of Amer. Math. Soc. 4(4), 729–769, (1991).

    Article  MATH  Google Scholar 

  28. D.G. Vassil’ev: Two-term asymptotics of the spectrum of a boundary value problem for inside reflection of a general type. Functional Anal. Apll. 18, 1–13 (1984).

    Article  MathSciNet  Google Scholar 

  29. D.G. Vassil’ev: Asymptotics of the spectrum of a boundary value problem. Trans. Moscow Math. Soc. 167–237 (1987).

    Google Scholar 

  30. D. Yafaev: Mathematical Scattering Theory. General Theory. AMS Rhode Island, Vol. 105 (1992).

    Google Scholar 

  31. G. Vodev: Sharp polynomial bounds on the number of scattering poles for perturbations of Laplacian. Comm. Math. Phys. 146(1), 205–216, (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. H. Weyl: Das asymptotische Verteilungsgesetz der eigenwerte linearer partieller Differentialgleichungen, Math. Ann. 71. 441–469 (1911).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Robert, D. (1994). A Trace Formula for Obstacles Problems and Applications. In: Demuth, M., Exner, P., Neidhardt, H., Zagrebnov, V. (eds) Mathematical Results in Quantum Mechanics. Operator Theory: Advances and Applications, vol 70. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8545-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8545-4_34

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9673-3

  • Online ISBN: 978-3-0348-8545-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics