D. Alboth: Closable translation invariant operators and perturbations by potentials. Dissertation, Kiel 1991.
Google Scholar
W. Arendt: Gaussian estimates and p-independence of the spectrum in Lp. Manuscript 1993.
Google Scholar
A. G. Belyi, Yu. A. Semenov: Lp-theory of Schrödinger semigroups II. Sibirskii Matematicheskii Zhurnal 31, 16–26 (1990) (russian). Translation: Siberian Math. J. 31, 540-549 (1990).
MathSciNet
Google Scholar
J. M. Berezanski: Expansions in eigenfunctions of selfadjoint operators. Transi. Math. Monogr., vol. 17, Amer. Math. Soc, Providence, 1968.
Google Scholar
P. L. Butzer, H. Berens: Semi-groups of operators and approximation. Springer-Verlag, Berlin, 1967.
CrossRef
MATH
Google Scholar
R. Hempel, J. Voigt: The spectrum of a Schrödinger operator in L
p(RN) is p-independent. Commun. Math. Phys. 104, 243–250 (1986).
MathSciNet
ADS
CrossRef
MATH
Google Scholar
R. Hempel, J. Voigt: On the L
p-spectrum of Schrödinger operators. J. Math. Anal. Appl. 121, 138–159 (1987).
MathSciNet
CrossRef
MATH
Google Scholar
I. W. Herbst, A. D. Sloan: Perturbation of translation invariant positivity preserving semigroups on L
2(RN). Transactions Amer. Math. Soc. 236, 325–360 (1978).
MathSciNet
MATH
Google Scholar
E. Hllle, R. S. Phillips: Functional analysis and semi-groups. Amer. Math. Soc, Providence, 1957.
Google Scholar
A. M. Hinz, G. Stolz: Polynomial boundedness of eigensolutions and the spectrum of Schrödinger operators. Math. Ann. 294, 195–211 (1992).
MathSciNet
CrossRef
MATH
Google Scholar
J. van Neerven: The adjoint of a semigroup of linear operators. Lecture Notes in Math. 1529, Springer-Verlag, Berlin, 1992.
Google Scholar
Th. Poerschke, G. Stolz, J. Weidmann: Expansions in generalized eigenfunctions of self adjoint operators. Math. Z. 202, 397–408 (1989).
MathSciNet
CrossRef
MATH
Google Scholar
M. Reed, B. Simon: Methods of modern mathematical physics II: Fourier analysis, self-adjointness. Academic Press, New York, 1975.
MATH
Google Scholar
G. Schreieck, J. Voigt: Stability of the Lp-spectrum of Schrödinger operators with form small negative part of the potential. In: “Functional Analysis”, Proc. Essen 1991, Bierstedt, Pietsch, Ruess, Vogt eds., Marcel Dekker, to appear.
Google Scholar
I. Eh. Shnol’: Ob ogranichennykh resheniyakh uravneniya vtorogo poryadka v chastnykh proizvodnykh. Dokl. Akad. Nauk SSSR 89, 411–413 (1953).
MATH
Google Scholar
M. A. Shubin: Spectral theory of elliptic operators on non-compact manifolds. In: “Méthodes semi-classiques, vol. 1”, Astérisque 207, 37–108 (1992).
Google Scholar
B. Simon: Schrödinger semigroups. Bull. (N. S.) Amer. Math. Soc. 7, 447–526 (1982).
CrossRef
MATH
Google Scholar
P. Stollmann, J. Voigt: Perturbation of Dirichlet forms by measures. Preprint 1992.
Google Scholar
K.-Th. Sturm: On the Lp-spectrum of uniformly elliptic operators on Riemannian manifolds. J. Funct. Anal., to appear.
Google Scholar