Advertisement

A Model for a Two-Layered Plate with Interfacial Slip

  • Scott W. Hansen
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 118)

Abstract

In this paper we derive a model for a two-layered plate in which slip can occur at the interface. We assume that a “glue” layer of negligible thickness bonds the two adjoining surfaces in such a way that the restoring force created by the glue is proportional to the amount of slippage. Within each plate the assumptions of Timoshenko beam theory (namely, that the straight filaments orthogonal to each center sheet at equilibrium remain straight during deformation) are applied and the equations of motion are derived through the principle of virtual work. We relate the resulting system to the Mindlin-Timoshenko-Reissner plate system and also to the Kirchhoff plate system by singular perturbations involving passing the shear stiffness parameter and the glue strength parameter to infinity.

1991 Mathematics Subject Classification

73K10 73K20 

Key words and phrases

Multi-layer plate Mindlin plate Reissner plate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Di]
    DiTaranto, R.A.: Theory of vibratory bending for elastic and viscoelastic layered finite-length beams,J. Appl. Mech. 32 (1965), 881–886.CrossRefGoogle Scholar
  2. [He]
    Heuer, R.: Static and dynamic analysis of transversely isotropic, moderately thick sandwich beams by analogy,Acta Mechanica 91 (1992), 1–9.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [Ke]
    Kerwin, E.M.: Damping of flexural waves by constrained visco-elastic layer,J. Acoustical Soc. of Am. 31 (1959), 952–962.CrossRefGoogle Scholar
  4. [La]
    Lagnese, J.E.: Boundary Stabilization of Thin Plates,series “SIAM Studies in Applied Mathematics” SIAM, Philadelphia 1989.Google Scholar
  5. [LL]
    Lagnese, J.E. and Lions, J.-L.: Modelling Analysis and Control of Thin Plates,collection:“Recherches en Mathématiques Appliquées”, RMA 6, Springer-Verlag, New York, 1989.Google Scholar
  6. [Li]
    Lions, J.-L.: Equations Différentielles OpérationnellesetProblèmes auxLimites,Grundlehren B III, Springer-Verlag, Berlin 1961.Google Scholar
  7. [LM]
    Lions, J.-L. and Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications,Vol 1, Springer-Verlag, Berlin 1972.CrossRefGoogle Scholar
  8. [Me]
    Mead, D.J.: A comparison of some equations for the flexural vibration of damped sandwich beams,J. Sound Vib. 83 (1982), 363–377.zbMATHCrossRefGoogle Scholar
  9. [Pa]
    Pazy, A.: Semigroups of linear operators and applications to partial differential equations,Springer-Verlag series “Applied Mathematical Sciences ” #44 Springer-Verlag, New York,1983CrossRefGoogle Scholar
  10. [Ti]
    Timoshenko, S., Young, D.H., Weaver, W.: Vibration problems in engineering,New York Wiley, 1974.,Google Scholar
  11. [YD]
    Yan, M.-J., Dowell, E.H.: Governing equations for vibrating constrained-layer damping sandwich plates and beams,J. Appl. Mech. 39 (1972) 1041–1046.CrossRefGoogle Scholar
  12. [Yu]
    Yu, Y.-Y.: Simple thickness-shear modes of vibration of infinite sandwich plates,J. Appl.Mech. 26 (1959), 679–681.MathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 1994

Authors and Affiliations

  • Scott W. Hansen
    • 1
  1. 1.Department of MathematicsIowa State UniversityAmesUSA

Personalised recommendations