Controllability of the Linear System of Thermoelasticity: Dirichlet-Neumann Boundary Conditions

  • Enrique Zuazua
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 118)


We prove that the linear system of thermoelasticity with various boundary conditions is controllable in the following sense: If the control time is large enough and we act in the equations of displacement by means of a control supported in a neighborhood of the boundary of the thermoelastic body, then we may control exactly the displacement and simultaneously the temperature in an approximate way. We consider the following two cases: a) The displacement satisfies Dirichlet boundary conditions and the temperature takes Neumann zero boundary value; b) The displacement satisfies Neumann boundary conditions and the temperature vanishes at the boundary. The method of proof is inspired in our earlier work where the same result was proved for the case where both displacement and temperature satisfy Dirichlet boundary conditions.

1991 Mathematics Subject Classification

93B05 73C05 35B37 

Key words and phrases

Linear system of thermoelasticity exact controllability approximate controllability decoupling observability inequalities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [FPZl]
    C. Fabre, J. P. Puel and E. Zuazua, Contrôlabilité approchée de l équation de la chaleur semilinéaire, C. R. Acad. Sci. Paris, 315, série I, 1992, 807–812.MathSciNetzbMATHGoogle Scholar
  2. [FPZ2]
    C. Fabre, J. P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Royal Soc. Edinburgh, to appear.Google Scholar
  3. [FPZ3]
    C. Fabre, J. P. Puel and E. Zuazua, Contrôlabilité approché de léquation de la chaleur linéaire avec des contrôles de norme L∞ minimale, C. R. Acad. Sci. Paris, 316, série I, 1993, 679–684.MathSciNetzbMATHGoogle Scholar
  4. [FPZ4]
    C. Fabre, J. P. Puel and E. Zuazua, On the density of the range of the semigroup for semilinear heat equations, IMA Preprint Series, # 1093, 1992.Google Scholar
  5. [H]
    S. W. Hansen, Boundary control of a one-dimensional, linear, thermoelastic rod, SIAM J. Cont. Optim., to appear.Google Scholar
  6. [HeLP]
    D. Henry, O. Lopes and A. Perissinitto, On the essential spectrum of a semigroup of thermoelasticity, preprint.Google Scholar
  7. [J]
    F. John, Partial Differential Equations ,Applied Mathematical Sciences 1, 4th edition, Springer Verlag, New York, 1986.Google Scholar
  8. [La]
    J. E. Lagnese, The reachability problem for thermoelastic plates, Arch. Rat. Mech. Anal., 112 (1990), 223–267.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [LaLi]
    J. E. Lagnese and J. L. Lions, Modelling, Analysis and Control of Thin Plates ,Masson, RMA 6, Paris, 1988.zbMATHGoogle Scholar
  10. [Li]
    J. L. Lions, Remarks on approximate controllability, J. Analyse. Math., 59, 1992, 103– 116.zbMATHCrossRefGoogle Scholar
  11. [N]
    K. Narukawa, Boundary value control of thermoelastic systems, Hiroshima Math. J., 13 (1983), 227–272.MathSciNetzbMATHGoogle Scholar
  12. [Z1]
    E. Zuazua, Contrôlabilité du Systeme de la thermoélasticité, C. R. Acad. Sci. Paris, 317 (1993), 371–376.MathSciNetzbMATHGoogle Scholar
  13. [Z2]
    E. Zuazua, Contrôlabilité du système de la thermoélasticité sans restrictions sur les paramètres de couplage, C. R. Acad. Sci. Paris, 318 (1994), 643–648.MathSciNetzbMATHGoogle Scholar
  14. [Z3]
    E. Zuazua, Controllability of the linear system of thermoelasticity, preprint. Enrique Zuazua Departamento de Matemática Aplicada Universidad Complutense 28040 Madrid, SpainGoogle Scholar

Copyright information

© Springer Basel AG 1994

Authors and Affiliations

  • Enrique Zuazua
    • 1
  1. 1.Departamento de Matemática AplicadaUniversidad ComplutenseMadridSpain

Personalised recommendations