# Conditional Stability in Determination of Densities of Heat Sources in a Bounded Domain

• Masahiro Yamamoto
Conference paper
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 118)

## Abstract

We consider the heat equation in a bounded domain Ω ⊂ ℝr :
$$\frac{{\partial u}}{{\partial t}}(x,t) = \Delta u(x,t) + \sigma (t)f(x) (x \in \Omega ,0 < t < T)$$
$$u(x,0) = 0 (x \in \Omega ), \frac{{\partial u}}{{\partial n}}(x,t) = 0 (x \in \partial \Omega ,0 < t < T)$$
Assuming that σ is a known function with σ (0) ≠ 0, we prove :(1) ƒ(x) (x ∊ Ω) can be uniquely determined from the boundary data u(x, t) (x ∊ ∂Ω, 0 < t < T). (2) If ƒ is restricted to a compact set in a Sobolev space, then we get an estimate:
$${{\left\| f \right\|}_{{{{L}^{2}}}}}_{{(\Omega )}} = 0\left( {{{{\left( {\log \frac{1}{\eta }} \right)}}^{{ - \beta }}}} \right)$$
as
$$\eta \equiv {{\left\| {u(,)} \right\|}_{{{{H}^{1}}}}}_{{(0 T {{L}^{2}}(\partial \Omega ))}} \downarrow 0$$
Here the exponent ß is given by the order of the Sobolev space which is assumed to contain the set of ƒ’s.

## 1991 Mathematics Subject Classification

35K05 35R25 35R30 35B30

## Key words and phrases

Conditional stability a priori bound biorthogonal function boundary observation density of heat source

## References

1. 1.
2. 2.
S. Agmon, Lectures on EllipticBoundary Value Problems, Van Nostrand, Princeton, N.J., 1965.Google Scholar
3. 3.
J. R. Cannon, Determination ofan unknown heat source from over specified boundary data, SIAM J. Numer.Anal. 5 (1968), 275–286.
4. 4.
J. R. Cannon and S. P. Esteva, Aninverse problem for the heat equation, Inverse Problems 2 (1986) 395–403.
5. 5.
R. Courant and D. Hilbert, Methodsof Mathematical Physics, Volume I, Interscience, New York, 1953.Google Scholar
6. 6.
H. O. Fattorini, Boundarycontrol of temperature distributions in a parallelepipedon, SIAM J. Control13 (1975) 1–13.
7. 7.
D. Fujiwara, Concretecharacterization of the domains of fractional powers of some elliptic differentialoperators of the second order, Proc. Japan Acad. 43 (1967), 82–86.
8. 8.
S. Itô, Diffusion Equations, (English translation), AmericanMathematical Society, Providence, Rhode Island, 1992.
9. 9.
M. M. Lavrent’ev, K. G. Reznitskaja and V. G. Yakhno, One-dimensional Inverse Problems of Mathematical Physics, (Englishtranslation), American Mathematical Society, Providence, Rhode Island, 1986.Google Scholar
10. 10.
M. M. Lavrent’ev, V. G. Romanov and S. P. Shishat-skí, Ill-posed Problems of Mathematical Physicsand Analysis, (English translation), American Mathematical Society,Providence, Rhode Island, 1986.Google Scholar
11. 11.
M. M. Lavrent’ev, V. G. Romanov and V. G. Vasil’ev, Multidimensional Inverse Problems for DifferentialEquations, (Lecture Notes in Mathematics, No. 167), Springer-Verlag, Berlin,1970.Google Scholar
12. 12.
S. Mizohata, The Theory ofPartial Differential Equations, Cambridge University Press, London, 1973.Google Scholar
13. 13.
A. Pazy, Semigroups of LinearOperators and Applications to Partial Differential EquationsSpringer-Verlag, Berlin,1983.
14. 14.
V. G. Romanov, Inverse Problemsof Mathematical Physics, (English translation), VNU Science Press, Utrecht,1987.Google Scholar
15. 15.
D. L. Russell, A unifiedboundary controllability theory for hyperbolic and parabolic partial differentialequations, Studies in Applied Mathematics 52 (1973), 189–211.
16. 16.
E. C. Titchmarsh, Introductionto the Theory of Fourier Integrals, Oxford University Press, London, 1937.Google Scholar
17. 17.
F. G. Tricomi, Integral Equations, Dover, New York,1985.Google Scholar
18. 18.
M. Yamamoto, Conditionalstability in determination of force terms of heat equations in a rectangle, Mathematicaland Computer Modelling 18 (1993), 79–88.