On Feedback Controls for Dynamic Networks of Strings and Beams and their Numerical Simulation

  • Günter Leugering
Conference paper
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 118)


In these notes we want to present some control strategies for dynamic networks of strings and beams in those situations where the classical concepts of exact or approximate controllability fail. This is, in particular, the case for networks containing circuits. Generically, a residual motion settles in such circuits, even if all nodes are subject to controls. In those situations we resort to controls which direct the flux of energy. Using such controls in a network, we are able to steer the entire energy to preassigned parts of the structure. In practice these parts are more massive and can absorb energy more easily than the fragile elements. We also provide numerical evidence for the control strategies discussed in these notes. The material is related to joint work with J.E. Lagnese and E.G.P.G. Schmidt, and is essentially included [14].

1991 Mathematics Subject Classification

39C20 39B52 65M06 65M60 

Key words and phrases

Absorbing directing and nonlinear controls disappearing solutions numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Brasey and E. Hairer, Half-explicitRunge-Kutta methods for differential-algebraic systems of index 2, SIAM J.Numer. Anal. 30 (1993), no.2, 538–552.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    H. Cabannes, Mouvement d’unecorde vibrante soumise à un fottement solide, C. R. Acad. Sc.Paris 287 (1978), 671–673.MathSciNetzbMATHGoogle Scholar
  3. 3.
    H. Cabannes, Propagation des discontinuités dans les cordes vibrante soumises à un frottementsolide,C. R.Acad. Sc. Paris 289 (1979),127–130.MathSciNetGoogle Scholar
  4. 4.
    G. Chen and Coleman, M. and H.H.West, Pointwise stabilization in the middle of the span for second ordersystems, nonuniform and uniform exponential decay of solutions, SIAM J. ControlOptim. 47 (1987), no.4, 751–779.MathSciNetzbMATHGoogle Scholar
  5. 5.
    R. Datko, Not all feedback stabilizedhyperbolic systems aer robust with respect to small time delays in theirfeedbacks, SIAM J. Control Optim. 26 (1988) 697–713.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    R. Datko A rank-one perturbation result on the spectra of certainoperators Proceedings ofthe Royal Society of Edinburgh 111A (1989),337–346.MathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Datko and Lagnese, J. E. and M.P. Polis, An example of the effect of time delays in boundary feedbackstabilization of wave equations SIAM J. Control Optim. 24 (1986), 152– 156.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    E. Hairer and G. Wanner, Solvingordinary differential equations II. Stiff and differential algebraic systems, Springer-Verlag, Berlin,1987.Google Scholar
  9. 9.
    L. Halpern, Absorbing boundaryconditions for the discretization of the one-dimensional wave equation, Mathematicsof Computation 38 (1982), no.158, 415–429.zbMATHCrossRefGoogle Scholar
  10. 10.
    A. Haraux, Comportement àl’infini pour une equation d’ondes non linéaire dissipative, C. R. Acad. Sc.Paris 287 (1978), 507–509.MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. Haraux Nonlinearevolution equations -global behavior of solutions, Lect. Notes inMathematics, vol.841, Springer-Verlag,Berlin, 1981.Google Scholar
  12. 12.
    T. J. R. Hughes, The finiteelement method. Linear static and dynamic finite element analysis, Prentice-Hall,New Yersey, 1987.Google Scholar
  13. 13.
    J. E. Lagnese and Leugering, G. andE. J. P. G. Schmidt, Controllability of planar networks of Timoshenko beams,SIAM J Control. and Optim. 31 (1993), 780–811.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    J. E. Lagnese and Leugering, G. andE. J. P. G. Schmidt Modelling, analysis and control of multi-link flexiblestructures, Birkhäuser Verlag,1994Google Scholar
  15. 15.
    G. Leugering and E. J. P. G.Schmidt, On the control of networks of vibrating strings and beams, Proceedingsof the 28th IEEE Conference on Decision and Control, vol.3, IEEE, 1989, pp.2287–2290.CrossRefGoogle Scholar
  16. 16.
    Bopeng Rao, Stabilisation du modéle SCOLE par un contrôle a priori borné, C.R. Acad. Sci.Paris, 316 (1993), 1061–1066.zbMATHGoogle Scholar
  17. 17.
    A. Y. Le Roux, Stability of numerical schemes solving quasi-linearwave equations, Mathematics of Computation 36 (1981), no.153, 93–105.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    D. L. Russell, Controllability and stabilizabilitytheory for linear partial differential equations: recent progress and openquestions, SIAM Review 20 (1978), 639–739.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    E. J. P. G. Schmidt, On the modelling and exactcontrollability of networks of vibrating strings, SIAM J. of Control andOptimization 30 (1992), 229–245.zbMATHCrossRefGoogle Scholar
  20. 20.
    J. Schmidt, Entwurf von Reglern zur aktiven Schwingungsdämpfung an flexiblen mechanischen Strukturen, Ph.D. thesis, 1987.Google Scholar

Copyright information

© Springer Basel AG 1994

Authors and Affiliations

  • Günter Leugering
    • 1
  1. 1.Mathematisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations