Numerical Solution of a Constrained Control Problem for a Phase Field Model

  • M. Heinkenschloss
  • E. W. Sachs
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 118)


A phase field model is considered for an evolution process which describes the phase change from solid to liquid. The process is controlled by inputs which are uniformly bounded. The objective is that the phase and the temperature follow certain desired functions as close as possible with a cost term for the control. The necessary optimality conditions of first order are formulated for this control problem. These conditions include projections which make the application of Newton’s method difficult. We present an approach to circumvent this difficulty and obtain an algorithm which is very efficient numerically. The numerical examples indicate that the required time to solve the problem with control constraints is of the same magnitude as for the unconstrained problem.

1991 Mathematics Subject Classification


Key words and phrases

Optimal control bound constraints projected Newton method phase field model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Atkinson. The numerical evaluation of fixed points for completely continuous operators.SIAM J. Numer. Anal.,10:799–807, 1973.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    D. B. Bertsekas. Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim.,20:221–246, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    H. Brakhage. Über die numerische Behandlung von Integralgleichungen nach der Quadraturformelmethode. Numer. Math.,2:183–196, 1960.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    G. Caginalp. An analysis of a phase field model of a free boundary. Archive for Rational Mechanics and Analysis,92:205–245, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Z. Chen. DasPhasenfeldmodellfürdas Problemder Phasenübergänge:Analysis,Numerik und Steuerung.PhD thesis, Institut für Mathematik, Universität Augsburg, Germany, 1991.Google Scholar
  6. 6.
    Z. Chen and K.-H. Hoffmann. Numerical solutions of the optimal control problem governed by a phase field model. In W. Desch, F. Kappel, and K. Kunisch, editors, Optimal Control of Partial Differential Equations,Basel, Boston, Berlin, 1991. Birkhäuser Verlag.Google Scholar
  7. 7.
    J. B. Collins and H. Levine. Diffusive interface model of diffusion limited crystal growth. Physica Review B,31:6119–6122, 1985.CrossRefGoogle Scholar
  8. 8.
    G. Fix. Phase field models for free boundary problems. In A. Fasano and M. Primicerio, editors, Free Boundary Problems: Theory and Applications, Vol. II,pages 580–589. Pitman, Boston, New York, Melbourne, 1983.Google Scholar
  9. 9.
    W. Hackbusch. Multi-Grid Methods and Applications.Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.zbMATHGoogle Scholar
  10. 10.
    M. Heinkenschloss. Numerical solution of a semilinear parabolic control problem. Technical report, Forschungsbericht, Universität Trier, FB IV -Mathematik, Postfach 3825, D-54286 Trier, 1993.Google Scholar
  11. 11.
    K.-H. Hoffmann and L. Jiang. Optimal control problem of a phase field model for solidification. Numer. Funct. Anal.,13:11–27, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    C. T. Kelley and E. W. Sachs. Solution of optimal control problems by a pointwise projected Newton method. Department of Mathematics, North Carolina State University, Raleigh, NC,1993.Google Scholar
  13. 13.
    O. Penrose and P. C. Fife. Thermodynamically consistent models of phase-field type for kinetics of phase transitions. Physica D,43:44–62, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Y. Saad and M. H. Schultz. GMRES a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J.Sci.Stat.Comp.,7:856–869, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    A. A. Wheeler, B. T. Murray, and R. J. Schaefer. Computation of dentrites using a phase field model. Physica D,66:243–262, 1993.zbMATHCrossRefGoogle Scholar
  16. 16.
    H. Yserentant. On the multi-level splitting of finite element spaces. Numer. Math.,49:379–412, 1986.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1994

Authors and Affiliations

  • M. Heinkenschloss
    • 1
  • E. W. Sachs
    • 2
  1. 1.Interdisciplinary Center for Applied Mathematics and Department of MathematicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.FB IV - MathematikUniversität TrierTrierFederal Republic of Germany

Personalised recommendations