Skip to main content

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 117))

Abstract

It is well-known that linear time-invariant electrical networks represent successful models in nearly all branches of electrical engineering. Therefore networks consisting of linear resistors, capacitors and inductors as well as dependent and independent sources — so-called active RLC networks — are of much interest till now in order to describe linear analog circuits. Studying electrical networks we have to remember the fundamental concept of this class of systems. The main idea is to build systems consisting of relative simple subsystems which are cooperate by means of a connection subsystem. Although this principle is used in many areas of engineering and natural sciences these ‘network concepts’ differ in their mathematical structures and the meaning of its variables. In electrical network theory systems are described by currents and voltages. Therefore we need equations which govern the simple subsystems and the connection subsystem; in this area these simple subsystems are denoted as network elements. First considerations of electrical networks were published by Ohm in 1828 [18]. His studies were continued by Kirchhoff, Helmholtz, Maxwell and others; for a historical overview see Wunsch [29].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brenan, K.E.; S.L. Campbell; L.R. Petzold: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, New York-Amsterdam 1989

    MATH  Google Scholar 

  2. Campbell, S.L.: Singular Systems of Differential Equations. Pitman, San Francisco 1980

    MATH  Google Scholar 

  3. Chua, L.O.; P.-M.Lin: Computer-Aided Analysis of Electronic Circuits. Prentice-Hall, Inc., Englewoods Cliffs (NJ) 1975

    MATH  Google Scholar 

  4. Cobb, D.: Feedback and Pole Placement in Descriptor Variable Systems. Intern.Journ. Contr. 33(1981)1135–1146

    Article  MathSciNet  MATH  Google Scholar 

  5. Desoer, C.A.; E.S. Kuh: Basic Circuit Theory. McGraw-Hill Book Comp., New York 1967

    Google Scholar 

  6. Dziurla, B.; R. Newcomb: The Drazin Inverse and Semistate Equations. Proc. 4th Intern. Symp. MTNS, Delft (The Netherlands), pp.283–289, 1979

    Google Scholar 

  7. Feldmann, U.; U.A. Wever; Q. Zheng; R. Schultz; H. Wriedt: Algorithms for Modern Circuit Simulation. AEÜ 46(1992)274–285

    Google Scholar 

  8. Fettweis, A.: On the Algebraic Derivation of the State Equations. IEEE CT-16(1969)171–175

    Google Scholar 

  9. Gantmacher, F.R.: Matrizenrechnung I + II. VEB Deutscher Verlag der Wissenschaften, Berlin 1971

    Google Scholar 

  10. Garbow, B.S.; J.M. Boyle; J.J. Dongarra; C.B. Moler: Matrix Eigenvalue Routines -EISPACK Guide Extension. Springer-Verlag, Berlin-New York 1977

    Book  Google Scholar 

  11. Marten, W.; W. Mathis: New Algebraic Methods in Linear Time-invariant System Theory. Proc. ECCTD’87, Paris 1987

    Google Scholar 

  12. Mathis, W.: Zur Theorie und Numerik verallgemeinerter Zustandsgleichungen im Frequenzbereich und deren Anwendung bei der Netzwerkanalyse. Dissertation, Braunschweig 1984

    Google Scholar 

  13. Mathis, W.: Bestimmung von Übertragungsfunktionen linearer Netzwerke als 2-faches verallgemeinertes Eigenwertproblem. 4. Symp. Simulationstechnik, Proc. of ASIM87: Halin, J.(Hrsg.): Simulationstechnik. Springer-Verlag, Berlin 1987

    Google Scholar 

  14. Mathis, W.: Theorie nichtlinearer Netzwerke. Springer-Verlag, Berlin 1987

    Book  Google Scholar 

  15. Mathis, W.: Issues Towards CAD Environments for Analog Circuits. Will be pushlish in the journal ’VLSI Design’, 1993

    Google Scholar 

  16. Menzel, A.: Anpassung und Implementation eines Verfahrens zur Pol/Nullstellen-Analyse in einen industriellen Schaltkreis-Simulator. Diploma Thesis, Techn. University Braunschweig, 1990

    Google Scholar 

  17. Moler, C.B.; G.W. Stewart: An Algorithm for Generalized Matrix Eigenvalue Problems. SIAM J. Num. Anal. 10(1973)241–256

    Article  MathSciNet  MATH  Google Scholar 

  18. Ohm, G.S.: Die Galvanische Kette, mathematisch bearbeitet (Nachdruck von 1827). VEB Deutscher Verlag der Wissenschaften, Berlin 1989

    Google Scholar 

  19. Pottle, C: State-Space Techniques for General Active Network Analysis. In: Kuo,F.F.; J.F. Kaiser: System Analysis by Digital Computer. John Wiley&Sons, Inc., New York 1966

    Google Scholar 

  20. Schmitz, P.; H. Bons; R. von Mege: Software -Qualitätssicherung -Testen im Software-Lebenszyklus (2. Edition). Friedr. Vieweg&Sohn, Braunschweig-Wiesbaden 1983

    Google Scholar 

  21. Schwartz, E.: Symbolic Analysis of Active RC-Networks with a Minicomputer. AEÜ 32(1978)456–462

    Google Scholar 

  22. Sorensen, E.V.: A Linear Semisymbolic Circuit Analysis Program Based in Algebraic Eigenvalue-Technique (ANP3) Report: Inst. Circuit Theory and Telecom., Techn. Univ. Denmark, 288 Lyngby, Oct. 1972

    Google Scholar 

  23. So, H.C., I.W. Sandberg: A Two-Sets-of-Eigenvalue Approach to the Computer Analysis of Linear Systems. IEEE CT-16(1969)509–517

    MathSciNet  Google Scholar 

  24. van Dooren, P.M.: Computation of Kronecker’s Canonical Form of a Singular Pencil. Linear Algebra Appl. 27(1979)103–140

    Article  MathSciNet  MATH  Google Scholar 

  25. van Dooren, P.M.: The Generalized Eigenstructure Problem in Linear System Theory. IEEE AC-26(1981)111–129

    Article  MATH  Google Scholar 

  26. Verghese, G.C.; B.C. Levy; T. Kailath: A General State-Space for Singular Systems. IEEE AC-26(1981)811–831

    Article  MathSciNet  MATH  Google Scholar 

  27. Ward, C.R.: Balancing the Generalized Eigenvalue Problem. SIAM J.Sci.Stat.Comp. 2(1981)141–152

    Article  MATH  Google Scholar 

  28. Wunsch, G.: Moderne Systemtheorie. Akademische Verlagsgesellschaft Geest u. Portig, Leipzig 1962

    Google Scholar 

  29. Wunsch, G.: Geschichte der Systemtheorie. Akademie-Verlag, Berlin 1985

    MATH  Google Scholar 

  30. Yosida, K.: Operational Calculus. Springer-Verlag, New York-Berlin 1984

    Book  MATH  Google Scholar 

  31. Zurmühl, R.; S. Falk: Matrizen 1. Grundlagen. Springer-Verlag, Berlin 1992 (6.Edition)

    MATH  Google Scholar 

  32. Zwillinger, D.: Handbook of Differential Equations. Academic Press, Boston-San Diego 1989

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this paper

Cite this paper

Mathis, W. (1994). Analysis of Linear Time-invariant Networks in the Frequency Domain. In: Bank, R.E., Gajewski, H., Bulirsch, R., Merten, K. (eds) Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices. ISNM International Series of Numerical Mathematics, vol 117. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8528-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8528-7_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9665-8

  • Online ISBN: 978-3-0348-8528-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics