Skip to main content

The Non-Stationary Semiconductor Model with Bounded Convective Velocity and Generation/Recombination Term.

  • Conference paper
  • 357 Accesses

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 117))

Abstract

An evolutionary model of semiconductor devices accounting for saturated convective velocities and source terms is considered. The model includes a generation/recombination term of Shockley-Read-Hall and Auger as well as current dependent terms related to impact ionization.

For the one dimensional model with the standard avalanche term existence and uniqueness of the global-in-time solutions are shown. In the case of several dimensions the solvability of rather general reaction-diffusion-convection system coupled with the Poisson equation is shown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.D. Alikakos, An application of the invariance principle to reaction-diffusion equations ,J.Differantial Equations 33 (1979), 201–225.

    Article  MathSciNet  MATH  Google Scholar 

  2. H.Gajewski, K.Gröger, On the basic equations for carrier transport in semiconductors ,J. Math. Anal. Appl. 113 (1986), 12–35.

    Article  MathSciNet  MATH  Google Scholar 

  3. H.Gajewski, K.Gröger, and K.Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen ,Akademie-Verlag, Berlin, 1974.

    MATH  Google Scholar 

  4. D.Gilbarg, N.S.Trudinger, Elliptic Partial Differential Equations of Second Order ,SpringerVerlag, Berlin, 1977.

    MATH  Google Scholar 

  5. O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type ,Amer.Math. Soc., Providence, 1968.

    Google Scholar 

  6. J.Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations ,Comm. Pure Appl. Math. 13 (1960), 457–468.

    Article  MathSciNet  MATH  Google Scholar 

  7. T.I.Seidman, The transient semiconductor problem with generation terms ,Computational Aspects of VLSI Design and Semiconductor Device Simulation, Amer. Math. Soc., Providence, 1988.

    Google Scholar 

  8. T.I.Seidman, The transient semiconductor problem with generation terms, II ,(preprint).

    Google Scholar 

  9. S. Selberherr, Analysis and Simulation of Semiconductor Devices ,Springer-Verlag, Wien, 1984.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this paper

Cite this paper

Wrzosek, D. (1994). The Non-Stationary Semiconductor Model with Bounded Convective Velocity and Generation/Recombination Term.. In: Bank, R.E., Gajewski, H., Bulirsch, R., Merten, K. (eds) Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices. ISNM International Series of Numerical Mathematics, vol 117. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8528-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8528-7_22

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9665-8

  • Online ISBN: 978-3-0348-8528-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics