Skip to main content

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 117))

  • 366 Accesses

Abstract

We prove a uniqueness result for the drift-diffusion-model of semiconductor devices under weak regularity assumptions. Our proof rests on the convexity of the free energy functional and uses a new concavity argument.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gajewski, H., On a variant of monotonicity and its application to differential equations, Nonlinear Analysis: Theory, Methods & Applications (to appear).

    Google Scholar 

  2. Gajewski, H., On uniqueness of solutions to the drift-diffusion-model of semiconductor devices, Preprint (1992).

    Google Scholar 

  3. Gajewski, H., K. Gröger, On the basic equations for carrier transport in semiconductors, Journal of Mathematical Analysis and Applications 113 (1986), 12–35.

    Article  MathSciNet  MATH  Google Scholar 

  4. Gajewski, H., K. Gröger, Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi-Dirac statistics, Math. Nachr. 140 (1989), 7 –36.

    Article  MathSciNet  MATH  Google Scholar 

  5. Gajewski, H., K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag Berlin (1974).

    MATH  Google Scholar 

  6. Gilbarg, D., N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, Heidelberg (1983).

    Book  MATH  Google Scholar 

  7. Gröger, K., A Wi,p-estimate for solutions to mixed boundary value problems for second order eliiptic differential equations, Math. Anal. 283 (1989), 679–687.

    Article  MATH  Google Scholar 

  8. Gröger, K., J. Rehberg, On the regularity of solutions to parabolic equations in case of mixed boundary conditions, (submitted to J. Reine und Angewandte Mathematik).

    Google Scholar 

  9. Gröger, K., J. Rehberg, Uniqueness for the two-dimensional semiconductor equations based on Fermi-Dirac statistics, (to appear).

    Google Scholar 

  10. Ladyshenskaja, O. A., Mathematical problems of the dynamic of viscose incompressible fluids, Moskau (1970) (russ).

    Google Scholar 

  11. Markowich, P. A., The stationary semiconductor device equations, Springer Series on Computational Microelectronics, Springer, Wien-New York 1986.

    Google Scholar 

  12. Mock, M. S., An initial value problem from semiconductor device theory, SIAM J. Math. Anal. 5 (1974), 597–612.

    Article  MathSciNet  MATH  Google Scholar 

  13. Mock, M. S., Analysis of mathematicals models of semiconductor devices, Boole press, Dublin (1983).

    Google Scholar 

  14. Nirenberg, L., On elliptic partial differential equations, Ann Scuola Norm. Sup. Pisa, Ser. III 13 (1959), 115–162.

    MathSciNet  MATH  Google Scholar 

  15. Platen, E., A stochastic approach to hopping transport in semiconductors, Journal of Statistical Physics, 59 (1990), 1329–1353.

    Article  MathSciNet  MATH  Google Scholar 

  16. Shamir, E., Regularization of mixed second order elliptic problems, Israel Journal of Mathematics 6 (1968), 150–168.

    Article  MathSciNet  MATH  Google Scholar 

  17. Van Roosbroeck, W., Theory of the flow of electrons and holes in germanium and other semiconductors, Bell Syst. Tech. J. 29 (1950), 560–607.

    Google Scholar 

  18. Zeidler, E., Nonlinear functional analysis and its applications II/3 (Nonlinear monotone operators), Springer-Verlag, Berlin, Heidelberg (1990).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this paper

Cite this paper

Gajewski, H. (1994). On uniqueness of solutions to the drift-diffusion-model of semiconductor devices. In: Bank, R.E., Gajewski, H., Bulirsch, R., Merten, K. (eds) Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices. ISNM International Series of Numerical Mathematics, vol 117. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8528-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8528-7_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9665-8

  • Online ISBN: 978-3-0348-8528-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics