Skip to main content

Julia Operators and Coefficient Problems

  • Conference paper
Nonselfadjoint Operators and Related Topics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 73))

Abstract

The form of a Julia operator for a given Kreĭn space operator is determined when an invariant subspace and certain factorizations are known. The result is related to contractive triangular operator matrices and the Schur algorithm. In the context of one-step extension problems for power series, the method yields closed-form expressions for the centers and radii of disks which characterize interpolation. The main example is a coefficient interpolation problem for normalized Riemann mappings B(z) of the unit disk into itself. If B(z)v is expanded in powers z v, z v+1,. . . for any real v, then the n-th coefficient belongs to a closed disk whose center and radius depend on v and lower order coefficients.

Research supported by the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gr. Arsene, Z. Ceauescu, and C. Foia, “On intertwining dilations. VIII,” J. Operator Theory 4 (1980), 55–91. MR 82d:47013.

    MathSciNet  MATH  Google Scholar 

  2. Gr. Arsene, Z. Ceauescu, and T. Constantinescu, “Multiplicative properties in the structure of contractions,” Oper. Theory: Adv. Appl., Vol. 19, pp. 9–22, Birkhuser, Basel-Boston, 1986. MR 89a:47025.

    Google Scholar 

  3. Gr. Arsene, T. Constantinescu, and A. Gheondea, “Lifting of operators and prescribed numbers of negative squares,” Michigan J. Math. 34 (1987), 201–216. MR 88j:47008.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Alpay and H. Dym, “On applications of reproducing kernel spaces to the Schur algorithm and rational J unitary factorization,” Oper. Theory: Adv. Appl., Vol. 18, pp. 89–159, Birkhuser, Basel-Boston, 1986. MR 89g:46051.

    MathSciNet  Google Scholar 

  5. M. Bakonyi and T. Constantinescu, Schur’s Algorithm and Several Applications Monografii Matematice, Universitatea din Timioara, Timioara, 1989.

    Google Scholar 

  6. J. A. Ball and N. Cohen, “de Branges-Rovnyak operator models and systems theory: a survey,” Oper. Theory: Adv. Appl., Vol. 50, pp. 93–136, Birkhuser, Basel-Boston, 1991.

    MathSciNet  Google Scholar 

  7. J. Bognr, Indefinite Inner Product Spaces ,Springer, Berlin-New York, 1974. MR 57#7125.

    Book  Google Scholar 

  8. L. de Branges, “ A proof of the Bieberbach conjecture,” Acta Math. 154 (1985), 137–152. MR 86h:30026.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. de Branges, “Unitary linear systems whose transfer functions are Riemann mapping functions,” Integral Equations and Operator Theory 19 (1986), 105–124. MR 88k:47011.

    Google Scholar 

  10. L. de Branges, “Powers of Riemann mapping functions,” The Bieberbach Conjecture (West Lafayette, Ind., 1985), pp. 51–67, Math. Surveys Monographs 21, Amer. Math. Soc., Providence, 1986. MR 88j:30034.

    Google Scholar 

  11. L. de Branges, “Complementation in Krein spaces,” Trans. Amer. Math. Soc. 305 (1988), 277–291. MR 89c:46034.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. de Branges, “Underlying concepts in the proof of the Bieberbach conjecture,” Proceedings of the International Congress of Mathematicians 1986, pp.25–42, Berkeley, California, 1986. MR 89f:30029.

    Google Scholar 

  13. L. de Branges, Square Summable Power Series ,in preparation.

    Google Scholar 

  14. L. de Branges and J. Rovnyak, Square Summable Power Series ,Holt, Rinehart and Winston, New York, 1966. MR 35 # 5909.

    MATH  Google Scholar 

  15. M.S. Brodski , “Unitary operator colligations and their characteristic functions,” Uspehi Mat. Nauk 33, no. 4 (202) (1978), 141–168, 256

    Google Scholar 

  16. English transl. Russian Math. Surveys 33, no. 4 (1978), 159–191. MR 80e:47010.

    Article  Google Scholar 

  17. B.Urgus, A. Dijksma, H. Langer, and H. S. V. de Snoo, “Characteristic functions of unitary colligations and of bounded operators in Krein spaces,” Oper. Theory: Adv. Appl., Vol. 41, pp. 125–152, Birkhuser, Basel-Boston, 1989. MR 91c:47020.

    Google Scholar 

  18. A. Dijksma, H. Langer, and H. S. V. de Snoo, “Unitary colligations in Krein spaces and their role in the extension theory of isometries and symmetric linear relations in Hilbert spaces,” Functional Analysis, II (Dubrovnic 1985), pp. 1–42, Lecture Notes in Math., Vol. 1242, Springer, Berlin-New York, 1987; MR 89a:47055.

    Chapter  Google Scholar 

  19. M. A. Dritschel, “The essential uniqueness property for linear operators in Kren spaces,” preprint, 1990.

    Google Scholar 

  20. M. A. Dritschel and J. Rovnyak, “Extension theorems for contraction operators on Kren spaces,” Oper. Theory: Adv. Appl., Vol. 47, pp. 221–305, Birkhuser, Basel-Boston, 1990; MR 92m:47068.

    MathSciNet  Google Scholar 

  21. M. A. Dritschel and J. Rovnyak, “Julia operators and complementation in Kren spaces,” Indiana U. Math. J. 40 (1991), 885–901.

    Article  MathSciNet  MATH  Google Scholar 

  22. V. K. Dubovoj, B. Fritsche, and B. Kirstein, Matricial Version of the Classical Schur Problem ,Teubner-Texte zur Mathematik, Bd. 129, B. G. Teubner Verlagsgesellschaft, Leipzig, 1992.

    MATH  Google Scholar 

  23. P. Duren, Univalent Functions ,Springer-Verlag, New York-Berlin, 1983. MR 85j:30034.

    MATH  Google Scholar 

  24. H. Dym, J Contractive Matrix Functions, Reproducing Kernel Hilbert Spaces, and Interpolation ,CBMS Regional Conference Series in Mathematics, Vol. 71, Amer. Math. Soc., Providence, 1989. MR 90g:47003.

    Google Scholar 

  25. C. Foia and A. Frazho, The Commutant Lifting Approach to Interpolation Problems ,Oper. Theory: Adv. Appl., Vol. 44, Birkhuser, Basel-Boston, 1990.

    Google Scholar 

  26. Y. Genin, P. Van Dooren, T. Kailath, J.-M. Delosme, and M. Morf, “On -lossless transfer functions and related questions,” Linear Algebra Appl. 50 (1983), 251– 275. MR 85g:93024.

    Article  MathSciNet  MATH  Google Scholar 

  27. I. Gohberg et al., I. Schur methods in operator theory and signal processing ,Oper. Theory: Adv. Appl., Vol. 18, Birkhuser, Basel-Boston, 1986. MR 88d:00006.

    Google Scholar 

  28. L. A. Harris, “Linear fractional transformations of circular domains in operator spaces,” Indiana U. Math. J. 41 (1992), 125–147.

    Article  MATH  Google Scholar 

  29. P. Henrici, Applied and Computational Complex Analysis ,Vol. 1, John Wiley & Sons, New York, 1974. MR 51 # 8378.

    MATH  Google Scholar 

  30. Kin Y. Li, “de Branges’ conjecture on bounded Riemann mapping coefficients,” J. Analyse Math. 54 (1990), 289–296. MR 91a:30013.

    Article  MathSciNet  MATH  Google Scholar 

  31. Kin Y. Li and James Rovnyak, “On the coefficients of Riemann mappings of the unit disk into itself,” Oper. Theory: Adv. Appl., to appear.

    Google Scholar 

  32. M. S. Livic and V. P. Potapov, “A theorem on the multiplication of characteristic matrix functions,” Dokl. Akad. Nauk SSSR (N.S.) 72 (1950), 625–628. MR 11, 669.

    Google Scholar 

  33. N. K. Nikol’skiand V. I. Vasyunin, “Quasiorthogonal decompositions in complementary metrics and estimates of univalent functions,” Algebra and Analysis 2 (4) (1990), 1–81

    Google Scholar 

  34. Engl. transl., Leningrad Math. J. 2 (1991), 691–764

    Google Scholar 

  35. and “Operator-valued measures and coefficients of univalent functions”, Algebra and Analysis 3 (6) (1991), 1–75

    Google Scholar 

  36. Engl. transl., St. Petersburg Math. J. 3 (6) (1992).

    Google Scholar 

  37. G. Pick, “ber die konforme Abbildung eines Kreises auf ein schlichtes und zugleich beschrnktes Gebiet,” S.-B. Kaiserl. Akad. Wiss. Wien 126 (1917), 247–263.

    MATH  Google Scholar 

  38. J. Rovnyak, “Coefficient estimates for Riemann mapping functions,” J. Analyse Math. 52 (1989), 53–93. MR 90f:30030.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Feintuch I. Gohberg

Additional information

To M. S. Livšic, with best wishes on his retirement.

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this paper

Cite this paper

Christner, G., Li, K.Y., Rovnyak, J. (1994). Julia Operators and Coefficient Problems. In: Feintuch, A., Gohberg, I. (eds) Nonselfadjoint Operators and Related Topics. Operator Theory: Advances and Applications, vol 73. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8522-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8522-5_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9663-4

  • Online ISBN: 978-3-0348-8522-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics