Skip to main content

Mutation load depending on variance in reproductive success and mating system

  • Chapter

Part of the book series: EXS ((EXS,volume 68))

Summary

Equalization of reproductive success of individuals, although it results in an increase of effective population size, leads also to an increase of the mutation load. The magnitude of this increase depends highly on the mode of fitness interactions between deleterious mutations, and is higher in the case of inbreeding. Recommended practices in conservation genetics must be evaluated in regards to these differing consequences of an increase of effective population size. To keep a balance between retaining genetic variability and minimizing the increase of the mutation load, equalization of reproductive success of a set of individuals rather than of every individual might be more advantageous.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allendorf, F. W. (1993) Delay of Adaptation to captive breeding by equalizing family size. Cons. Biol. 7: 416–419.

    Article  Google Scholar 

  • Borlase, S. C., Loebel, D. A., Frankham, R., Nurthen, R. K., Briscoe, D. A. and Daggard, G. E. (1992) Modeling problems in conservation genetics using captive Drosophila populations. Consequences of equalization of family sizes. Cons. Biol. 7: 122–131.

    Article  Google Scholar 

  • Boucher, W. and Cotterman, C. W. (1990) On the classification of regular systems of inbreeding. J. Math. Biol. 28: 293–305.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, R. B. (1988) Mating structure and the cost of deleterious mutation: postponing inbreeding. J. Heredity 79: 179–183.

    CAS  Google Scholar 

  • Campbell, R. B. (1993) The importance of mating structure versus progeny distribution for genetic identity under mutation. Theor. Pop. Biol. 43: 129–140.

    Article  Google Scholar 

  • Charlesworth, B., Morgan, M. T. and Charlesworth, D. (1991) Multilocus models of inbreeding depression with synergistic selection and partial self-fertilization. Genet. Res. 57: 177–194.

    Article  Google Scholar 

  • Charlesworth, D., Morgan, M. T. and Charlesworth, B. (1993) Mutation accumulation in finite outbreeding and inbreeding populations. Genet. Res. 61: 39–56.

    Article  Google Scholar 

  • Crow, J. F. (1970) Genetic loads and the cost of natural selection. In: Kojima, K. (ed.), Mathematical models in population genetics. Springer-Verlag, Berlin-New York, pp. 128–177.

    Chapter  Google Scholar 

  • Crow, J. F. and Kimura, M. (1965) The theory of genetic loads. In: Genetics today ,Proc. of XI Int. Cong. of Genetics, Pergamon Press, Frankfurt, pp. 495–506.

    Google Scholar 

  • Frankham, R., Loebel, D. A., Borlase, S. C., Britton, J., Woodworth, L., Nurthen, R. K., Briscoe, D. A., Spielman, D. and Craven, D. (1992) Modeling problems in conservation genetics using Drosophila. CBSG News 3: 11–13.

    Google Scholar 

  • Haig, S. M., Ballou, J. D. and Derrickson, S. R. (1990) Management options for preserving genetic diversity: reintroduction of Guam rails to the wild. Cons. Biol. 4: 290–299.

    Article  Google Scholar 

  • Haldane, J. B. S. (1924) A mathematical theory of natural and artificial selection. Trans. Camb. Phil. Soc. 23: 19–41.

    Google Scholar 

  • Haldane, J. B. S. (1937) The effect of variation on fitness. Am. Nat. 71: 337–349.

    Article  Google Scholar 

  • Hedrick, P. W. and Miller, P. S. (1992) Conservation genetics: techniques and fundamentals. Ecol. Appl. 21: 30–46.

    Article  Google Scholar 

  • Kimura, M. and Crow, J. F. (1963) On the maximum avoidance of inbreeding. Genet. Res. 4: 399–415.

    Article  Google Scholar 

  • Kimura, M. and Maruyama, T. (1966) The mutation load with epistatic gene interactions in fitness. Genetics 54: 1337–1351.

    PubMed  CAS  Google Scholar 

  • Kimura, M. and Ohta, T. (1971) Theoretical Aspects of population genetics. Princeton University Press, Princeton.

    Google Scholar 

  • Kimura, M., Maruyama, T. and Crow, J. F. (1963) The mutation load in small populations. Genetics 48: 1303–1312.

    PubMed  CAS  Google Scholar 

  • King, J. L. (1965) The effect of litter culling — or family planning — on the rate of natural selection. Genetics 51: 425–429.

    PubMed  CAS  Google Scholar 

  • Kondrashov, A. S. (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336: 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Lande, R. and Schemske, D. W. (1985) The evolution of self-fertilization and inbreeding depression in plants. Evolution 39: 24–40.

    Article  Google Scholar 

  • Malecot, G. (1948) Les Mathématiques de l’hérédité. Masson, Paris.

    Google Scholar 

  • Nagylaki, T. (1992) Introduction to theoretical population genetics. Springer-Verlag, Berlin- New York.

    Book  Google Scholar 

  • Nei, M. and Murata, M. (1966) Effective population size when fertility is inherited. Genet. Res. 8: 257–260.

    Article  PubMed  CAS  Google Scholar 

  • Ralls, K. and Meadows, R. (1993) Breeding like flies. Nature 361: 689–690.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, M. J. and Crow, J. F. (1977) Mutations affecting fitness in Drosophila populations. Annu. Rev. Genet. 11: 49–78.

    Article  PubMed  CAS  Google Scholar 

  • Spielman, D. and Frankham, R. (1992) Modelling problems in conservation genetics using captive Drosophila populations: Improvement of reproductive fitness due to immigration of one individual into small partially inbred populations. Zoo Biol. 11: 343–351.

    Article  Google Scholar 

  • Wiens, D., Calvin, C. L., Wilson, C. A., Davern, C. I., Frank, D. and Seavey, S. R. (1987) Reproductive success, spontaneous embryo abortion and genetic load in flowering plants. Oecologia 71: 501–509.

    Article  Google Scholar 

  • Wiens, D., Nickrent, D. L., Davern, C. I., Calvin, C. L. and Vivrette, N. J. (1989) Developmental failure and loss of reproductive capacity in the rare palaeoendemic shrub Dedeckera eurekensis. Nature 338: 65–67.

    Article  Google Scholar 

  • Wright, S. (1969) Evolution and the genetics of populations. Vol. II. The University of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Couvet, D., Ronfort, J. (1994). Mutation load depending on variance in reproductive success and mating system. In: Loeschcke, V., Jain, S.K., Tomiuk, J. (eds) Conservation Genetics. EXS, vol 68. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8510-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8510-2_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9657-3

  • Online ISBN: 978-3-0348-8510-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics