Skip to main content

Fractal Landscapes in Physiology & Medicine: Long-Range Correlations in DNA Sequences and Heart Rate Intervals

  • Chapter
Fractals in Biology and Medicine

Abstract

Healthy systems in physiology and medicine are remarkable for their structural variability and dynamical complexity. The concept of fractal growth and form offers novel approaches to understanding morphogenesis and function from the level of the gene to the organism. For example, scale-invariance and long-range power-law correlations are features of non-coding DNA sequences as well as of healthy heartbeat dynamics. For cardiac regulation, perturbation of the control mechanisms by disease or ageing may lead to a breakdown of these long-range correlations that normally extend over thousands of heartbeats. Quantification of such scaling alterations are providing new approaches to problems ranging from molecular evolution to monitoring patients at high risk of sudden death.

We briefly review recent work from our laboratory concerning the application of fractals to two apparently unrelated problems: DNA organization and beat-to-beat heart rate variability. We show how the measurement of long-range power-law correlations may provide new understanding of nucleotide organization as well as of the complex fluctuations of the heartbeat under normal and pathologic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.-K. Peng, S.V. Buldyrev, A.L. Goldberger, S. Havlin, F. Sciortino, M. Simons, and H.E. Stanley, Nature 356, 168 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. E.W. Montroll and M.F. Shlesinger, «The Wonderful World of Random Walks», in Nonequilibrium Phenomena II. From Stochastics to Hydrodynamics, eds. J.L. Lebowitz and E.W. Montroll, pp. 1–121 (North-Holland, Amsterdam, 1984).

    Google Scholar 

  3. S. Tavaré and B.W. Giddings, in Mathematical Methods for DNA Sequences, Eds. M.S. Waterman (CRC Press, Boca Raton, 1989), pp. 117–132.

    Google Scholar 

  4. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, pp. 120–121 (Oxford Univ. Press, London, 1971).

    Google Scholar 

  5. S. Havlin, R.B. Selinger, M. Schwartz, H.E. Stanley and A. Bunde, Phys. Rev. Lett. 61, 1438 (1988).

    Article  PubMed  Google Scholar 

  6. C.-K. Peng, S.V. Buldyrev, A.L. Goldberger, S. Havlin, F. Sciortino, M. Simons, and H.E. Stanley, Physica 191, 25 (1992).

    Article  CAS  Google Scholar 

  7. C.-K. Peng, S.V. Buldyrev, A.L. Goldberger, S. Havlin, M. Simons, and H.E. Stanley, Phys. Rev. E 47, 3729 (1993).

    Article  Google Scholar 

  8. P.J. Munson. R.C. Taylor and G.S. Michaels, Nature 360, 636 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. S.V. Buldyrev, A.L. Goldberger, S. Havlin, C.-K. Peng, H.E. Stanley, and M. Simons, preprint.

    Google Scholar 

  10. S.V. Buldyrev, A.L. Goldberger, S. Havlin, C.-K. Peng, M. Simons, and H.E. Stanley, Phys. Rev. E 47, 4514 (1993).

    Article  CAS  Google Scholar 

  11. H.E. Stanley et al., preprint.

    Google Scholar 

  12. W.B. Cannon, Physiol. Rev. 9, 399 (1929).

    Google Scholar 

  13. C.-K. Peng, J. Mietus, J.M. Hausdorff, S. Havlin, H.E. Stanley, and A.L. Goldberger, Phys. Rev. Lett. 70, 1343 (1993), and references therein.

    Article  Google Scholar 

  14. B.J. West and A.L. Goldberger, J. Appl. Physiol, 60, 189 (1986).

    Article  Google Scholar 

  15. B.J. West and A.L. Goldberger, Am. Sci., 75, 354 (1987), and references therein.

    Google Scholar 

  16. A.L. Goldberger, D.R. Rigney and B.J. West, Sci. Am. 262, 42 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. D.R. Rigney et al., preprint.

    Google Scholar 

  18. D.R. Rigney, J.E. Mietus and A.L. Goldberger, Circulation 82(Suppl. III), 236 (1990).

    Google Scholar 

  19. J.E. Skinner, C. Carpeggiani, C.E. Landisman and K.W. Fulton, Circ. Res. 68, 966 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. A.L. Goldberger, NIPS (Int. Union Physiol. Sci./Am. Physiol. Soc.) 6, 87 (1991).

    CAS  Google Scholar 

  21. L.A. Lipsitz and A.L. Goldberger, J. Amer. Med. Assoc. 267, 1806 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Peng, CK. et al. (1994). Fractal Landscapes in Physiology & Medicine: Long-Range Correlations in DNA Sequences and Heart Rate Intervals. In: Nonnenmacher, T.F., Losa, G.A., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8501-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8501-0_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9652-8

  • Online ISBN: 978-3-0348-8501-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics