Skip to main content

A Structured Interior Point SQP Method for Nonlinear Optimal Control Problems

  • Chapter
Computational Optimal Control

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 115))

Abstract

Direct boundary value problem methods in connection with SQP iteration have proven very successful in solving nonlinear optimal control problems. Such methods use parameterized control functions, discretize the state differential equations by, e.g., multiple shooting or collocation, and treat the discretized BVP as an equality-constraint in a large nonlinear constrained optimization problem. In realistic applications several thousands of variables can appear in the NLP. Solution by standard techniques is therefore impractical. A careful choice of the discretization leads to QP subproblems possessing a very special m-stage block-sparse structure, where m is the grid size. The paper presents a recursive solution algorithm that fully exploits this QP sparseness to generate a factorization of the inverse of the KKT matrix in O(m) operations. A structure-preserving primal-dual barrier method is proposed for treating the generally large number of state and control inequality constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. T. Betts, W. P. Huffman: Path Constrained Trajectory Optimization Using Sparse Sequential Quadratic Programming, Boeing Computer Services, 1991.

    Google Scholar 

  2. H. G. Bock, K.-J. Plitt: A Multiple Shooting Algorithm for Direct Solution of Optimal Control Processes, Proc. 9th IFAC World Congress, Budapest, 1984.

    Google Scholar 

  3. A. V. Fiacco, G. P McCormick.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, New York, 1968.

    MATH  Google Scholar 

  4. K. R. Frisch: The Logarithmic Potential Method of Convex Programming, Unpublished manuscript, University Institue of Economics, Oslo, 1955.

    Google Scholar 

  5. P. E. Gill, W. Murray, M. A. Saunders, M. H. Wright: A Schur-Complement Method for Sparse Quadratic Programming, Report SOL 87–12, Department of Operations Research, Stanford University.

    Google Scholar 

  6. P. E. Gill, W. Murray, D. B. Ponceleón, M. H. Wright: Solving Reduced KKT Systems in Barrier Methods for Linear and Quadratic Programming, Report SOL 91–7, Department of Operations Research, Stanford University.

    Google Scholar 

  7. C. Gonzaga: An Interior Trust Region Method for Linearly Constrained Optimization, MPS Newsletter 19 (1991) 55–65.

    Google Scholar 

  8. C. R. Hargraves, R. W. Paris: Direct Trajectory Optimization Using Nonlinear Programming and Collocation, AIAA J. Guidance 10 (1987) 338–342.

    Article  MATH  Google Scholar 

  9. N. Karmarkar: A New Polynomial Time Algorithm for Linear Programming, Combinatorica 4 (1984) 373–395.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Konzelmann, H. G. Bock, R. W. Longman: Time Optimal Trajectories of Polar Robot Manipulators by Direct Methods, Modeling and Simulation, 20/5 (1989) 1933–1939, Instrument Society of America.

    Google Scholar 

  11. J. Konzelmann, H. G. Bock, R. W. Longman: Time Optimal Trajectories of Elbow Robots by Direct Methods, Proc. AIAA Guidance, Navigation and Control Conference, Boston (1989) AIAA Paper 89–3530-CP.

    Google Scholar 

  12. S. Mehrotra: On the Implementation of a (Primal-Dual) Interior Point Method, Technical Report 90–03, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL, 1990.

    Google Scholar 

  13. R. D. C. Monteiro, I. Adler: Interior Path Following Primal-Dual Algorithms. Part II: Convex Quadratic Programming, Mathematical Programming 44 (1989) 43–66.

    Article  MathSciNet  MATH  Google Scholar 

  14. K.-J. Plitt: Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung beschränkter optimaler Steuerungen, Diploma Thesis (in German), Department of Applied Mathematics, University of Bonn, 1981.

    Google Scholar 

  15. M. C. Steinbach, H. G. Bock, R. W. Longman: Time Optimal Control of SCARA Robots, Proc. AIAA Guidance, Navigation and Control Conference, Portland (1990) AIAA Paper 90-3394-CP.

    Google Scholar 

  16. O. von Stryk: Numerical Solution of Optimal Control Problems by Direct Collocation, Report No. 322, Department of Mathematics, Munich University of Technology, 1991.

    Google Scholar 

  17. Y. Ye, E. Tse: An Extension of Karmarkar’s Projective Algorithm for Convex Quadratic Programming, Mathematical Programming 44 (1989) 157–179.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Steinbach, M.C. (1994). A Structured Interior Point SQP Method for Nonlinear Optimal Control Problems. In: Bulirsch, R., Kraft, D. (eds) Computational Optimal Control. ISNM International Series of Numerical Mathematics, vol 115. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8497-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8497-6_17

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-5015-4

  • Online ISBN: 978-3-0348-8497-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics