Skip to main content

Reactive metabolites of oxygen and nitrogen, adhesion molecule expression and chronic joint inflammation

  • Chapter
Free Radicals and Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 139 Accesses

Abstract

One of the hallmark features of rheumatoid arthritis (RA) is the infiltration of large numbers of mononuclear leukocytes (monocytes, lymphocytes) into the inflamed synovium. In addition, extensive polymorphonuclear leukocyte (neutrophil) infiltration is observed in synovial fluid. This inflammatory infiltrate is accompanied by extensive articular damage including cartilage and bone erosion, edema and enhanced vascular permeability suggesting an important role for these leukocytes in the pathophysiology of RA. Recent studies have demonstrated that the enhanced leukocyte infiltrate and some of the pathophysiology observed in different models of synovitis and in human RA may be mediated by the interaction between leukocytes and specific endothelial cell adhesion molecules (ECAMs) [1-6]. These observations have prompted us to propose that the synovial microvasculature regulates chronic joint inflammation by virtue of its ability to modulate the infiltration of immune-modulating and/or potentially injurious leukocytes into the synovial interstitium. Indeed, one of the earliest histopathological events observed in the development of RA is activation and/or injury to the endothelial cell lining of the synovial microvasculature [7 9].This discussion will review the data implicating ECAMs as important determinants in the pathogenesis of RA and discuss the molecular mechanisms that regulate ECAM expression in the chronically inflamed joint, and indicate the roles of oxygen-and nitrogen-derived free radicals in these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kavanaugh AF, Davis LS, Nichols LA, Norris SH, Rothlein R, Scharschmidt LA, Lipsky PE (1994) Treatment of refractory rheumatoid arthritis with a monoclonal antibody to intercellular adhesion molecule 1. Arthritis Rheum 37: 992–999

    Article  PubMed  CAS  Google Scholar 

  2. Kavanaugh AF, Davis LS, Jain RI, Nichols LA, Norris SH, Lipsky PE (1996) A Phase I/II open label study of the safety and efficacy of an anti-ICAM-1 (intercellular adhesion molecule-1; CD54) monoclonal antibody in early rheumatoid arthritis. J Rheumatol 23: 1338–1344

    PubMed  CAS  Google Scholar 

  3. Kavanaugh AF, Schulze-Koops H, Davis LS, Lipsky PE (1997) Repeat treatment of rheumatoid arthritis patients with a murine anti-intercellular adhesion molecule 1 monoclonal antibody. Arthritis Rheum 40: 849–853

    Article  PubMed  CAS  Google Scholar 

  4. Schimmer RC, Schrier DJ, Flory CM, Dykens J, Tung DKL, Jacobson PB, Friedl HP, Conroy MC, Schimmer BB, Ward PA (1997) Streptococcal cell wall-induced arthritis. J Immunol 159: 4103–4108

    PubMed  CAS  Google Scholar 

  5. Issekutz AC, Ayer L, Miyasaka M, Issekutz TB (1996) Treatment of established adju-vant arthritis in rats with monoclonal antibody to CD18 and very late activation antigen-4 integrins suppresses neutrophil and T-lymphocyte migration to the joints and improves clinical disease. Immunol 88: 569–576

    Article  CAS  Google Scholar 

  6. Issekutz AC and Issekutz TB (1995) Monocyte migration to arthritis in rats utilizes both CD11/CD18 and very late activation antigen 4 integrin mechanisms. J Exp Med 181: 1197–1203

    Article  PubMed  CAS  Google Scholar 

  7. Kulka JP, Bocking D, Ropes MW (1955) Early joint lesions of rheumatoid arthritis. Arch Pathol 59: 129–150

    CAS  Google Scholar 

  8. Schumacher HR (1975) Synovial membrane and fluid morphologic alterations in early rheumatoid arthritis: Microvascular injury and virus-like particles. Ann NY Acad Sci 256: 39–64

    Article  PubMed  Google Scholar 

  9. Schumacher HR Jr (ed) (1993) Primer on the rheumatic diseases. Arthritis Foundation Printing, Atlanta, 86–89

    Google Scholar 

  10. Weyand CM, Goronzy JJ (1997) Pathogenesis of rheumatoid arthritis. Adv Rheumatol 81: 29–55

    CAS  Google Scholar 

  11. Firestein GS (1998) Rheumatoid synovitis and pannus. In: JH Klippel, PA Dieppe (eds): Rheumatology. Mosby, London, 513.1–513.24

    Google Scholar 

  12. Schulze-Koops H, Lipsky PE, Kavanaugh AF, Davis LS (1995) Elevated Th1- or Th0like cytokine mRNA in peripheral circulation of patients with rheumatoid arthritis. J Immunol 155: 5029–5037

    PubMed  CAS  Google Scholar 

  13. Odeh M (1997) Short analytical review: New insights into the pathogenesis and treatment of rheumatoid arthritis. Clin Immunol Immunopathol 83: 103–116

    Article  PubMed  CAS  Google Scholar 

  14. Lebsack ME, Paul CC, Bloedow DC (1991) Subcutaneous IL-1 receptor antagonist in patients with rheumatoid arthritis (abstract). Arthritis Rheum 34 (Supp 9): S45

    Google Scholar 

  15. Elliott MJ, Maini RN, Feldmann M, Kalden JR, Antoni C, Smolen JS, Leeb B, Breed-veld FC, Macfarlane JD, Bilj H, Woody JN (1994) Randomized double-blind comparison of chimeric monoclonal antibody to tumor necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 344: 1105–1110

    Article  PubMed  CAS  Google Scholar 

  16. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76: 301–314

    Article  PubMed  CAS  Google Scholar 

  17. Kishimoto TK (1991) A dynamic model for neutrophil localization to inflammatory sites. J NIH Res 3: 75–77

    Google Scholar 

  18. Schmid-Schonbein, GW, Usami, S, Skalak, T, Chien, S (1980) The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc Res 19: 45–70

    Article  PubMed  CAS  Google Scholar 

  19. Granger DN (1997) Cell adhesion and migration. II. Leukocyte-endothelial cell adhesion in the digestive system. Am J Physiol 273: G982–G986

    PubMed  CAS  Google Scholar 

  20. McEver RP (1991) GMP-140, a receptor that mediates interactions of leukocytes with activated platelets and endothelium. Trends in Cardiovasc Med 1: 152–156

    Article  CAS  Google Scholar 

  21. McEver RP (1991) Selectins: novel receptors that mediate leukocyte adhesion during inflammation. Thromb Haemostasis 65: 223–228

    CAS  Google Scholar 

  22. Patel KD, Zimmerman GA, Prescott SM et al (1991) Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J Cell Biol 112: 749–759

    Article  PubMed  CAS  Google Scholar 

  23. Springer TA, Lasky LA (1991) Sticky sugars for selectins. Nature 349: 196–197

    Article  PubMed  CAS  Google Scholar 

  24. Picker LJ, Warnock RA, Burns AR et al (1991) The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ECAM-1 and GMP-140. Cell 66: 921–933

    Article  PubMed  CAS  Google Scholar 

  25. Granger DN, Kubes P (1994) The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J Leuk Biol 55: 662–675

    CAS  Google Scholar 

  26. Kishimoto TK, Jutila MA, Berg EL et al (1989) Neutrophil Mac-1 and MEL-14 adhe-sion proteins inversely regulated by chemotactic factors. Science 245: 1238–1241

    Article  PubMed  CAS  Google Scholar 

  27. Marlin SD, Springer TA (1987) Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51: 813–819

    Article  PubMed  CAS  Google Scholar 

  28. Smith CW, Marlin SD, Rothlein R et al (1989) Cooperative interactions of LFA-1 and MAC-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest 83: 2008–2017

    Article  CAS  Google Scholar 

  29. Carlos TM, Harlan JM (1990) Membrane proteins involved in phagocyte adherence to endothelium. Immunol Rev 114: 5–28

    Article  PubMed  CAS  Google Scholar 

  30. Larson RS, Springer TA (1990) Structure and function of leukocyte integrins. Immunol Rev 114: 181–217

    Article  PubMed  CAS  Google Scholar 

  31. Springer TA (1990) Adhesion receptors of the immune system. Nature 346: 425–434

    Article  PubMed  CAS  Google Scholar 

  32. Montefort S, Holgate ST (1991) Adhesion molecules and their role in inflammation. Resp Med 85: 91–99

    Article  CAS  Google Scholar 

  33. Diamond MS, Staunton DE, Marlin SD et al (1991) Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65: 961–971

    Article  PubMed  CAS  Google Scholar 

  34. Staunton DE, Dustin ML, Springer TA (1989) Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 339: 61–64

    Article  PubMed  CAS  Google Scholar 

  35. De Fougerolles AR, Stacker SA, Schwarting R, Springer TA (1991) Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1. J Exp Med 174: 253–267

    Article  PubMed  Google Scholar 

  36. Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272: 60–66

    Article  PubMed  CAS  Google Scholar 

  37. Muller W, Seigi SA, Deng X et al (1993) PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 178: 449–460

    Article  PubMed  CAS  Google Scholar 

  38. Cronstein BN (1994) Adhesion molecules in the pathogenesis of rheumatoid arthritis. Curr Opin Rheumatol 6: 300–304

    Article  PubMed  CAS  Google Scholar 

  39. Tak PP, Thurkow EW, Daha MR, Kluin PM, Smeets TJM, Meinders AE, Breedveld FC (1995) Expression of adhesion molecules in early rheumatoid synovial tissue. Clin Immunol I mmuno pathol 77: 236–242

    CAS  Google Scholar 

  40. Ishikawa H, Hirata S, Andoh Y, Kubo H, Nakagawa N, Nishibayashi Y, Mizuno K(1996) An immunohistochemical and immunoelectron microscopic study of adhesion molecules in synovial pannus formation in rheumatoid arthritis. Rheumatol Int 16: 53–60

    Article  PubMed  CAS  Google Scholar 

  41. Mellbye OJ, Shen Y, Hogasen K, Mollnes TE, Forre O (1996) Adhesion molecule expression and complement activation in vessel walls in synovial tissue from patients with chronic inflammatory joint disease. Clin Rheumatol 15: 441–447

    Article  PubMed  CAS  Google Scholar 

  42. Mulherin DM, Veale DJ, Belch JJF, Bresnihan B, Fitzgerald 0 (1996) Adhesion molecule in untreated inflammatory arthritis. QJ Med 89: 195–203

    Article  CAS  Google Scholar 

  43. Oppenheimer-Marks N, Lipsky PE (1996) Short Analytical Review: Adhesion molecules as targets for the treatment of autoimmune diseases. Clin Immunol Immunopathol 79: 203–210

    Article  PubMed  CAS  Google Scholar 

  44. McMurray RW (1996) Adhesion molecules in autoimmune disease. Sem Arth Rheum 25: 215–233

    Article  CAS  Google Scholar 

  45. Chapman ML, Rubin BR, Gracy RW (1989) Increased carbonyl content of proteins in synovial fluid from patients with rheumatoid arthritis. J Rheumatol 16: 15–18

    PubMed  CAS  Google Scholar 

  46. Ialenti A, Moncada S, DiRosa M (1993) Modulation of adjuvant arthritis by endogenous nitric oxide. Br J Pharmacol 110: 701–706

    Article  PubMed  CAS  Google Scholar 

  47. Halliwell B (1995) Free Radicals and rheumatic disease. In: B Henderson, JCW Edwards, ER Pettipher (eds): Mechanisms and models in rheumatoid arthritis. Academic Press Ltd, London, 301–306

    Chapter  Google Scholar 

  48. Skaleric U, Allen JB, Smith PD, Mergenhagen SE, Wahl SM (1991) Inhibitors of reactive oxygen intermediates suppress bacterial cell wall-induced arthritis. J Immunol 147: 2559–2564

    PubMed  CAS  Google Scholar 

  49. Edwards SW, Hughes V, Barlow J and Bucknall R (1988) Immunological detection of myeloperoxidase in synovial fluid from patients with rheumatoid arthritis. Biochem J 250: 81–85

    PubMed  CAS  Google Scholar 

  50. Dabbagh AJ, Blake DR and Morris CJ (1992) Effect of iron complexes on adjuvant arthritis in rats. Ann Rheum Dis 51: 516–521

    Article  PubMed  CAS  Google Scholar 

  51. Blake DR, Merry P, Stevens C, Dabbagh A, Sahinoglu T, Allen R, Morris C (1990) Iron free radicals and arthritis. Proc Nutr Soc 49: 239–245

    Article  PubMed  CAS  Google Scholar 

  52. Biemond P, Swaak AJG, Koster JF (1984) Protective factors against oxygen free radicals and hydrogen peroxide in rheumatoid arthritis synovial fluid. Arthritis Rheum 27: 760–765

    Article  PubMed  CAS  Google Scholar 

  53. Weinberg JB, Granger DL, Pisetsky DS, Seldin MF, Misukonis MA, Mason SN, Pippen AM, Ruiz P, Wood ER, Gilkeson GS (1994) The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: increased nitric oxide production and nitric oxide synthase expression in MRL-1pr/1pr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-L-arginine. J Exp Med 179: 651–660

    Article  PubMed  CAS  Google Scholar 

  54. Stefanovic-Racic M, Stadler J, Evans CH (1993) Nitric oxide and arthritis. Arthritis Rheum 36: 1036–1044

    Article  PubMed  CAS  Google Scholar 

  55. Stefanovic-Racic M, Meyers K, Meschter C, Coffey JW, Hoffman RA, Evans CH (1994) N-monomethyl arginine, an inhibitor of nitric oxide synthase, suppresses the development of adjuvant arthritis in rats. Arthritis Rheum 37: 1062–1069

    Article  PubMed  CAS  Google Scholar 

  56. Connor JR, Manning PT, Settle SL, Moore WM, Jerome GM, Webber RK, Tjoeng FS, Currie MG (1995) Suppression of adjuvant-induced arthritis by selective inhibition of inducible nitric oxide synthase. Eur J Pharm 273: 15–24

    Article  CAS  Google Scholar 

  57. Shingu M, Takahashi S, Ito M, Hamamatsu N, Suenaga Y, Ichibangase Y, Nobunaga M (1994) Anti-inflammatory effects of recombinant human manganese superoxide dismutase on adjuvant arthritis in rats. Rheumatol Int 14: 77–81

    Article  PubMed  CAS  Google Scholar 

  58. Cannon GW, Openshaw SJ, Hibbs JB Jr, Hoidal JR, Huecksteadt TP, Griffiths MM (1996) Nitric oxide production during adjuvant-induced and collagen-induced arthritis. Arthritis Rheum 39: 1677–1684

    Article  PubMed  CAS  Google Scholar 

  59. McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie Q, Nathan CF, Wahl SM (1993) Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med 178: 749–754

    Article  PubMed  CAS  Google Scholar 

  60. Baeuerle PA, Henkle T (1994) Function and activation of NF-KB in the immune system. Ann Rev Immunol 58: 1–27

    Google Scholar 

  61. Collins T, Read MA, Neish AS et al (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-KB and cytokine-inducible enhancers. FASEB J 9: 899–909

    PubMed  CAS  Google Scholar 

  62. Read MA, Neish AS, Luscinskas FW et al (1995) The proteasome pathway is required for cytokine-induced endothelial-leukocyte adhesion molecule expression. Immunity 2: 493–506

    Article  PubMed  CAS  Google Scholar 

  63. Conner EM, Brand S, Davis JM et al (1997) Proteasome inhibition attenuates nitric oxide synthase expression, VCAM-1 transcription and the development of chronic colitis. J Pharm Exp Ther 282: 1615–1622

    CAS  Google Scholar 

  64. Baeuerle PA, Baltimore D (1995) IKB: a specific inhibitor of NF-KB transcription factor. Science 268: 522–523

    Article  Google Scholar 

  65. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of NF-KB transcription factor and HIV-1. Embo J 10: 2247–2258

    PubMed  CAS  Google Scholar 

  66. Schreck R, Meier B, Mannel DN et al (1992) Dithiocarbamates as potent inhibitors of nuclear factor KB activation in intact cells. J Exp Med 175: 11810

    Article  Google Scholar 

  67. Schreck R, Albermann K, Baeuerle PA (1992) NF-KB: an oxidative stress-responsive transcription factor of eukaryotic cells. Free Rad Res Comm 17: 221–237

    Article  CAS  Google Scholar 

  68. Schmidt KN, Amstad P, Cerutti Pet al (1995) The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-KB. Chem Biol 2: 13–22.

    Article  PubMed  CAS  Google Scholar 

  69. Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10: 709–720

    PubMed  CAS  Google Scholar 

  70. Munroe DG, Wang EY, MacIntyre P et al (1995) Novel intracellular signaling function of prostaglandin H synthase-1 in NF-KB activation. J Inflamm 45: 260–268

    PubMed  CAS  Google Scholar 

  71. Weber C, Erl W, Pietsch A et al (1994) Antioxidants inhibit monocyte adhesion by suppressing nuclear factor-KB mobilization and induction of vascular cell adhesion mole-cule-1 in endothelial cells stimulated to generate radicals. Arterioscler Thromb 14: 1665–1673

    Article  PubMed  CAS  Google Scholar 

  72. Suzuki Y, Wang W, Vu TH et al (1992) Effect of NADPH oxidase inhibition on endothelial cell ELAM-1 mRNA expression. Biochem Biophys Res Comm 184: 1339–1343

    CAS  Google Scholar 

  73. Schulze-Osthoff K, Beyaert R, Vandervoorde V et al (1993) Depletion of the mitochondria) electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J 12: 3095–3104

    CAS  Google Scholar 

  74. Blackwell TS, Blackwell TR, Holden EP et al (1996) In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation. J Immunol 157: 1630

    PubMed  CAS  Google Scholar 

  75. Ye SF, Malik AB (1997) In vivo inhibition of nuclear factor-kB activation prevents inducible nitric oxide synthase expression and systemic hypotension in a rat model of septic shock. J Immunol 159: 3976–3983

    Google Scholar 

  76. Handel ML, McMorrow LB, Gravallese EM (1995) Nuclear factor-KB in rheumatoid synovium. Arthritis Rheum 38: 1762–1770

    Article  PubMed  CAS  Google Scholar 

  77. Mercurio F, Zhu H, Murray BW et al (1997) IKK-1 and IKK-2: Cytokine-activated IKB Kinases essential for NF-KB activation. Science 278: 860–866

    Article  PubMed  CAS  Google Scholar 

  78. Woronicz JD, Gao X, Cao Z et al (1997) IKB Kinase-ß: NF-KB activation and complex formation with IKB kinase-a and NIK. Science 278: 866–869

    Article  PubMed  CAS  Google Scholar 

  79. Goldberg AL (1995) Functions of the proteasome: the lysis at the end of the tunnel. Science 268: 522–523

    Article  PubMed  CAS  Google Scholar 

  80. Palombella VJ, Rando OJ, Goldberg AL et al (1994) The ubiquitin-proteasome pathway is required for processing the NF-KB1 precursor protein and the activation of NF-KB. Cell 78: 773–785

    Article  PubMed  CAS  Google Scholar 

  81. Palombella VJ, Conner EM, Fuseler JW, Destree A, Davis JM, Laroux FS, Wolf RE, Huang J, Brand S, Elliott PJ et al (1998) Role of the proteasome and NF-kappaB in streptococcal cell wall-induced polyarthritis. Proc Natl Acad Sci USA 95: 15671–15676

    Article  PubMed  CAS  Google Scholar 

  82. Evans CH, Stefanovic-Racic M, Lancaster J (1995) Nitric oxide and its role in orthopaedic disease. Clin Ortho Rel Res 275–294

    Google Scholar 

  83. Cochran FR, Selph J, Sherman P (1996) Insights into the role of nitric oxide in inflammatory arthritis. Med Res Rev 16: 547–563

    Article  PubMed  CAS  Google Scholar 

  84. Anbar M, Gratt BM (1997) Role of nitric oxide in the physiopathology of pain. J Pain Symptom Manage 14: 225–254

    Article  PubMed  CAS  Google Scholar 

  85. Salvemini D, Wang Z-Q, Wyatt PS, Bourdon DM, Marino MH, Manning PT, Currie MG (1996) Brit J Pharmacol 118: 829–838

    Article  CAS  Google Scholar 

  86. Fletcher DS, Widmer WR, Luell S, Christen A, Orevillo C, Shah S, Visco D (1998) Therapeutic administration of a selective inhibitor of nitric oxide synthase does not ameliorate the chronic inflammation and tissue damage associated with adjuvant-induced arthritis in rats. J Pharmacol Exp Therapeutics 284: 714–721

    CAS  Google Scholar 

  87. Kurose I, Wolf R, Grisham MB et al (1994) Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res 74: 376–382

    Article  PubMed  CAS  Google Scholar 

  88. Gaboury J, Woodman RC, Granger DN et al(1993) Nitric oxide prevents leukocyte adherence: role of superoxide. Am J Physiol 265: H862–H867

    PubMed  CAS  Google Scholar 

  89. Liao, L, Granger, DN (1995) Modulation of oxidized low-density lipoprotein-induced microvascular dysfunction by nitric oxide. Am J Physiol 268: H1643–1650

    PubMed  CAS  Google Scholar 

  90. Huie RE, Padmaja S (1993) The reaction of NO with superoxide. Free Rad Res Comm 18: 195–199

    CAS  Google Scholar 

  91. Miles AM, Bohle DS, Glassbrenner PA et al (1996) Modulation of superoxide-dependent oxidation of hydroxylation reactions by nitric oxide. J Biol Chem 271: 40–47

    Article  PubMed  CAS  Google Scholar 

  92. Wink DA, Cook JA, Kim SY et al (1997) Superoxide modulates the oxidation and nitrosation of thiols by nitric oxide-derived reactive intermediates. J Biol Chem 272: 11147–11151

    Article  PubMed  CAS  Google Scholar 

  93. Kurose I, Wolf R, Grisham MB et al (1994) Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res 74: 376–382

    Article  PubMed  CAS  Google Scholar 

  94. Gaboury J, Woodman RC, Granger DN et al (1993) Nitric oxide prevents leukocyte adherence: role of superoxide. Am J Physiol 265: H862–H867

    PubMed  CAS  Google Scholar 

  95. Suematsu M, Tamatani T, Delano FA et al (1994) Microvascular oxidative stress preceding leukocyte activation elicited by in vivo nitric oxide suppression. Heart Circ Physiol 35: H2410–H2415

    Google Scholar 

  96. Gauthier TW, Davenpeck KL, Lefer AM (1994) Nitric oxide attenuates leukocyte-endothelial interaction via P-selectin in splanchnic ischemia-reperfusion. Am J Physiol 267: G562–G568

    PubMed  CAS  Google Scholar 

  97. Peng HB, Libby P, Liao JK (1995) Induction and stabilization of IkBx by nitric oxide mediates inhibition of NF-x13. J Biol Chem 270: 14214–14219

    Article  PubMed  CAS  Google Scholar 

  98. DeCaterina R, Libby P, Peng HB et al (1995) Nitric oxide decreases cytokine-induced endothelial cell activation: Nitric oxide selectively reduces endothelial cell expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96: 60–68

    Article  CAS  Google Scholar 

  99. Khan BV, Harrison DG, Olbrych MT et al (1996) Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Nat Acad Sci USA 93: 9114–9119

    Article  PubMed  CAS  Google Scholar 

  100. Kaplan SS, Billiar T, Curran RD et al (1989) Inhibition of chemotaxis with NGmonomethyl-L-arginine. A role for cyclic GMP. Blood 74: 1885–1887

    PubMed  CAS  Google Scholar 

  101. Beauvais F, Michel L, Dubertret L (1995) Exogenous nitric oxide elicits chemotaxis of neutrophils in vitro. J Cell Physiol 165: 610–614

    Article  CAS  Google Scholar 

  102. Villarete LH, Remick, DG (1995) Nitric oxide regulation of IL-8 expression in human endothelial cells. Biochem Biophys Res Commun 211: 671–676

    Article  PubMed  CAS  Google Scholar 

  103. Lander HM, Jacovina AT, Davis RJ et al (1996) Differential activation of mitogen-activated protein kinases by nitric oxide-related species. J Biol Chem 271: 19705–19709

    Article  PubMed  CAS  Google Scholar 

  104. Grisham MB, Granger DN, Lefer, DJ (1998) Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen: relevance to ischemic heart disease. Free Rad Biol Med 25: 404–433

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Grisham, M.B., Wolf, R.E. (2000). Reactive metabolites of oxygen and nitrogen, adhesion molecule expression and chronic joint inflammation. In: Winyard, P.G., Blake, D.R., Evans, C.H. (eds) Free Radicals and Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8482-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8482-2_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9586-6

  • Online ISBN: 978-3-0348-8482-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics