Skip to main content

Abstract

The epithelial lining of the airways forms the first line of defence against toxic and infectious agents in the inspired air. Although airway epithelial cells have traditionally been seen to play a vital role in providing an impermeable barrier and clearing the airways of noxious inhaled agents, through efficient mucociliary clearance, there is now increasing evidence to suggest that airway epithelial cells play a more important physico-chemical role. Several studies have demonstrated that epithelial cells are capable of synthesising and releasing several biologically active mediators which directly or indirectly influence the activity of inflammatory cells important in allergic airway diseases, including allergic rhinitis and asthma [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Devalia JL, Davies RJ (1993) Airway epithelial cells and mediators of inflammation. Respir Med 87: 405–408

    Article  PubMed  CAS  Google Scholar 

  2. Carson JL, Collier AM, Boucher RC (1987) Ultrastructure of the respiratory epithelium in the human nose. In: N Mygind, U Pipkorn (eds): Allergic and vasomotor rhinitis: pathophysiological aspects. Munksgaard, Copenhagen, 11–27

    Google Scholar 

  3. Mygind N, Bisgaard H (1990) Applied anatomy of the airways. In: N Mygind, U Pipkorn, R Dahl (eds): Rhinitis and asthma: similarities and differences. Munksgaard, Copenhagen, 21–37

    Google Scholar 

  4. Jacquot J, Hayem A, Galabert C (1992) Functions of proteins and lipids in airway secre-tions. Eur Respir J 5: 343–358

    PubMed  CAS  Google Scholar 

  5. Evans MJ, Plopper CG (1988) The role of basal cells in adhesion of columnar epitheli-um to airway basement membrane. Am Rev Respir Dis 138: 481–483

    Article  PubMed  CAS  Google Scholar 

  6. Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17: 375–412

    Article  PubMed  CAS  Google Scholar 

  7. Elia C, Bucca C, Rolla G, Scappaticci E, Cantino DA (1988) Freeze-fracture study of human bronchial epithelium in normal, bronchitic and asthmatic subjects. J Submicrosc Cytol Pathol 20: 509–517

    PubMed  CAS  Google Scholar 

  8. Rusznak C, Devalia JL, Lozewicz S, Davies RJ (1994) The assessment of nasal mucocil-iary clearance and the effect of drugs. Respir Med 88: 89–101

    Article  PubMed  CAS  Google Scholar 

  9. Nils G. (1981) Structure and ultrastructure of the nose. In: N Mygind (ed): Nasal aller-gy. Blackwell Scientific Publications, Oxford, 3–38

    Google Scholar 

  10. Evans MJ, Shami SG, Cabral-Anderson LJ, Dekker NP (1986) Role of non-ciliated cells in renewal of the bronchial epithelium of rats exposed to NO2. Am J Pathol 123: 126–133

    PubMed  CAS  Google Scholar 

  11. Rogers DF (1994) Airway goblet cells: responsive and adaptable front-line defenders. Eur Respir J 7: 1690–1706

    Article  PubMed  CAS  Google Scholar 

  12. Hulsmann AR, De Jongste JC (1996) Modulation of airway responsiveness by airway epithelium in humans: putative mechanisms. Clin Exp Allergy 26: 1236–1242

    Article  PubMed  CAS  Google Scholar 

  13. Lozewicz S, Wells C, Gomez E, Ferguson H, Richman P, Devalia J, Davies RJ (1990) Morphological integrity of the bronchial epithelium in mild asthmatics. Thorax 45: 12–15

    Article  PubMed  CAS  Google Scholar 

  14. Vanhoute PM (1988) Epithelium-derived relaxing factor(s) and bronchial reactivity. Am Rev Respir Dis 138: 24S–30S

    Google Scholar 

  15. Wilkens JH, Wilkens H, Forstermann U, Frolich JC (1990) The effect of bronchial epithelium on bronchial contractility. Pneumologie 44: 373–374

    PubMed  Google Scholar 

  16. Ricci M, Rossi O (1990) Dysregulation of IgE responses and airway allergic inflammation in atopic individuals. Clin Exp Allergy 20: 601–609

    Article  PubMed  CAS  Google Scholar 

  17. Devalia JL, Sapsford RJ, Wells C, Richman P, Davies RJ (1990) Culture and comparison of human bronchial and nasal epithelial cells in vitro.Respir Med 84: 303–312

    Article  PubMed  CAS  Google Scholar 

  18. Lyons CR (1996) The role of nitric oxide in inflammation. Adv Immunol 60: 323–370

    Article  Google Scholar 

  19. Barnes PJ, Belvisi MG (1996) Exhaled nitric oxide: a new lung function test. Thorax 51: 233–237

    Article  PubMed  CAS  Google Scholar 

  20. Barnes PJ, Belvisi MG (1993) Nitric oxide and lung disease. Thorax 48: 1034–1043

    Article  PubMed  CAS  Google Scholar 

  21. Howarth PH, Redington AE, Sringall DR et al (1995) Epithelially derived endothelin and nitric oxide in asthma. Int Arch Allergy Immunol 107: 228–230

    Article  PubMed  CAS  Google Scholar 

  22. Robbins RA, Barnes PJ, Springall DR, Warren JB, Kwon OJ, Buttery LDK, Wilson AJ, Geller DA, Polak JM (1994) Expression of inducible nitric oxide in human lung epithelial cells. Biochem Biophys Res Commun 203: 209–218

    Article  PubMed  CAS  Google Scholar 

  23. Guo FH, DeRaeve HR, Rice TW et al (1995) Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal airway epithelium in vivo. Proc Nati Acad Sci USA 92: 7809–7813

    Article  CAS  Google Scholar 

  24. Hamid Q, Springall DR, Riveros-Moreno V et al (1993) Induction of nitric oxide synthase in asthma. Lancet 342: 1510–1513

    Article  PubMed  CAS  Google Scholar 

  25. Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T (1989) The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA 86: 2863–2867

    Article  PubMed  CAS  Google Scholar 

  26. Mullol J, Chowdhury BA, White MV, Ohkubo K, Rieves RD, Baraniuk J, Hausfeld JN, Shelhamer JH, KalinerMA (1993) Endothelin in human nasal mucosa. Am J Respir Cell Mol Biol 8: 393–402

    PubMed  CAS  Google Scholar 

  27. Wu T, Mullol J, Rieves RD et al (1992) Endothelin-1 stimulates eicosanoid production in cultured human nasal mucosa. Am J Respir Cell Mol Biol 6: 168–174

    PubMed  CAS  Google Scholar 

  28. Nakano J, Takizawa H, Ohtoshi T, Shoji S, Yamaguchi M, Ishii A, Yanagisawa M, Ito K (1994) Endotoxin and pro-inflammatory cytokines stimulate endothelin-1 expression and release by airway epithelial cells. Clin Exp Allergy 24: 330–336

    Article  PubMed  CAS  Google Scholar 

  29. Ackerman V, Carpi S, Bellini A, Vassalli G, Marini M, Mattoli S (1995) Constitutive expression of endothelin in bronchial epithelial cells of patients with symptomatic and asymptomatic asthma and modulation by histamine and interleukin-1. J Allergy Clin Immunol 96: 618–627

    Article  PubMed  CAS  Google Scholar 

  30. Nomoura A, Uchida Y, Kameyama M, Saotome M, Oki K, Hasegawa S (1989) Endothelin and bronchial asthma. Lancet 2: 747–748

    Article  Google Scholar 

  31. Marini M, Fasoli A, Mattoli S (1991) Release of endothelin in the airways of patients with symptomatic asthma and reversible airflow obstruction. Am Rev Respir Dis 143 (Suppl): A158

    Google Scholar 

  32. Springall DR, Howarth PH, Counihan H et al (1991) Endothelin immunoreactivity of airway epithelium in asthmatic patients. Lancet 337: 697–701

    Article  PubMed  CAS  Google Scholar 

  33. Redington AE, Springall DR, Ghatei MA et al (1995) Endothelin in bronchoalveolar lavage fluid and its relationship to airflow obstruction in asthma. Am J Respir Crit Care Med 151: 1034–1039

    PubMed  CAS  Google Scholar 

  34. Vittori E, Marini M, Fasoli A et al (1992) Increased expression of endothelin in bronchial epithelial cells of asthmatic patients and effect of corticosteroids. Am Rev Respir Dis 146: 1320–1325

    PubMed  CAS  Google Scholar 

  35. Bradding P, Redington AE, Djukanovic R et al (1995) 15-Lipoxygenase immunoreactivity in normal and in asthmatic airways. Am J Respir Crit Care Med 151: 1201–1204

    PubMed  CAS  Google Scholar 

  36. Hunter JA, Finkbeiner WE, Nadel JA, Goetzl EJ, Holtzman MJ (1985) Predominant generation of 15-lipoxygenase metabolites of arachidonic acid by epithelial cells from human trachea. Proc Natl Acad Sci USA 82: 4633–4637

    Article  PubMed  CAS  Google Scholar 

  37. Churchill L, Chilton FH, Resau JH, Bascom R, Hubbard WC, Proud D (1989) Cyclooxygenase metabolism of endogenous arachidonic acid by cultured human tracheal epithelial cells. Am Rev Respir Dis 140: 449–459

    Article  PubMed  CAS  Google Scholar 

  38. Devalia JL, Sapsford RJ, Cundell DR Campbell AM, Davies RJ (1993) Human bronchial epithelial cell dysfunction following exposure to nitrogen dioxide in vitro. Eur Respir J 6: 1308–1316

    PubMed  CAS  Google Scholar 

  39. Henderson W (1987) Eicosanoids and lung inflammation. Am Rev Respir Dis 135: 1176–1185

    PubMed  CAS  Google Scholar 

  40. Laitinen LA, Laitinen A, Haahtela T, Vilkka V, Spur BW, Lee TH (1993) Leukotriene E4 and granulocyte infiltration into asthmatic airways. Lancet 341: 989–900

    Article  PubMed  CAS  Google Scholar 

  41. Wenzel SE, Westocott JY, Smith HR, Larsen GL (1989) Spectrum of prostanoid release after bronchoalveolar allergen challenge in atopic asthmatics and in control group. Am Rev Respir Dis 139: 450–457

    Article  PubMed  CAS  Google Scholar 

  42. Denburg JA, Jordana M, Gibson P, Hargreave F, Gauldie J, Dolovich J (1990) Cellular and molecular basis of allergic airways inflammation. In: SGO Johanssen (ed): Pharmacia allergy research foundation award book. AW Grafiska, Uppsala, 15–22

    Google Scholar 

  43. Devalia JL, Campbell AM, Sapsford RJ, Rusnak C, Quint D, Godard P, Bousquet J, Davies RJ (1993) The effect of nitrogen dioxide on synthesis of inflammatory cytokines expressed by human bronchial epithelial cells in vitro. Am J Respir Cell Mol Biol 9: 271–278

    PubMed  CAS  Google Scholar 

  44. Wang JH, Devalia JL, Xia C, Sapsford RJ, Davies RJ (1996) Expression of RANTES in human bronchial epithelial cells in vitro and in vivo, the effect of corticosteroids. Am J Respir Cell Mol Biol 9: 271–278

    CAS  Google Scholar 

  45. Levine SJ (1995) Bronchial epithelial cell-cytokine interactions in airway inflammation. J Invest Med 3: 241–249

    Google Scholar 

  46. Mullol J, Xaubet A, Gaya A et al (1995) Cytokine gene expression and release from epithelial cells. A comparison study between healthy nasal mucosa and nasal polyps. Clin Exp Allergy 25: 607–615

    Article  PubMed  CAS  Google Scholar 

  47. Ohtoshi T, Tsuda T, Vancheri C et al (1991) Human upper airway epithelial cell-derived granulocyte-macrophage colony-stimulating factor induces histamine-containing cell differentiation of human progenitor cells. Int Arch Allergy App! Immunol 95: 376–384

    Article  CAS  Google Scholar 

  48. Calderon MA, Devalia JL, Prior AJ, Sapsford RJ, Davies RJ (1997) A comparison of cytokine release from epithelial cells cultured from nasal biopsy specimens of atopic patients with and without rhinitis and nonatopic subjects without rhinitis. J Allergy Clin Immunol 99: 65–76

    PubMed  CAS  Google Scholar 

  49. Sousa AR, Lane SJ, Nakhosteen JA, Yoshimura T, Lee TH, Poston RN (1994) Increased expression of the monocyte chemoattractant protein-1 in bronchial tissue from asthmatic subjects. Am J Respir Cell Mol Biol 10: 142–147

    PubMed  CAS  Google Scholar 

  50. Marini M, Vittori E, Hollomberg T, Mattoli S (1992) Expression of the potent inflammatory cytokines granulocyte macrophage-colony stimulating factor and interleukin-6 and interleukin-8 in bronchial epithelial cells of patients with asthma. J Allergy Clin Immunol 89: 1001–1009

    Article  PubMed  CAS  Google Scholar 

  51. Laberge S, Ernst P, Ghaffar O, Song YL, Cruikshank WW, Center DM, Hamid Q (1996) Increase in interleukin-16 (IL-16) expression in baseline asthma. J Allergy Clin Immunol 97: 1 (Part 3); 313 (abstract)

    Article  Google Scholar 

  52. Bayram H, Devalia JL, Khair OA, Abdelaziz MM, Sapsford RJ, Ohtoshi T, Davies RJ (1997) Effect of diesel exhaust particles (DEP) on release of inflammatory mediators from bronchial epithelial cell cultures of non-atopic non-asthmatic and atopic asthmatic subjects in vitro.Eur Respir J 10 (Suppl 25): 414s

    Google Scholar 

  53. Pavord I, Wong C, Williams J, Tattersfield A (1993) Effect of inhaled prostaglandin E2 on allergen-induced asthma. Am Rev Respir Dis 148: 87–90

    PubMed  CAS  Google Scholar 

  54. Marone G, Kagey-Sobotka, Lichtenstein L (1979) Effects of arachidonic acid and its metabolites on antigen-induced histamine release from human basophils in vitro. J Immunol 123: 1669–1677

    PubMed  CAS  Google Scholar 

  55. Christman BW, Christman JW, Dworski R, Blair IA, Prakash C (1993) Prostaglandin E2 limits arachidonic acid availability and inhibits leukotriene B4 synthesis in rat alveolar macrophages by a non phospholipase A2 mechanism. J Immunol 151: 1096–1104

    Google Scholar 

  56. Ohkubo K, Baraniuk JN, Hohman RJ et al (1993) Human nasal mucosal neutral endopeptidase (NEP): location, quantitation and secretion. Am J Respir Cell Mol Biol 9: 557–567

    PubMed  CAS  Google Scholar 

  57. Ohkubo K, Okuda M, Kaliner MA (1994) Immunological localization of neuropeptidedegrading enzymes in the nasal mucosa. Rhinology 31: 130–133

    Google Scholar 

  58. Baraniuk JN, Ohkubo K, Kwon OJ et al (1995) Localizatrion of neutral endopeptidase (NEP) mRNA in human bronchi. Eur Respir J 8: 1458–1464

    PubMed  CAS  Google Scholar 

  59. Hay DWP, Farmer SC, Raeburn D, Robinson VA, Flemming WW, Feaden JS (1986) Airway epithelium modulates the reactivity of guinea pig respiratory smooth muscle. Eur J Pharmacol 129: 11–18

    Article  PubMed  CAS  Google Scholar 

  60. Vanhoute PM (1988) Epithelium-derived relaxing factor(s) and bronchial reactivity. Am Rev Respir Dis 138: 24S–30S

    Google Scholar 

  61. Macky CR, Imhof BA (1993) Cell adhesion in immune system. Immunol Today 14: 99–104

    Article  Google Scholar 

  62. Frenete PS, Wagner DD (1996) Adhesion molecules. N Eng J Med 6: 1526–1529

    Article  Google Scholar 

  63. Albelda SM, Buck CA (1990) Integrins and other cell adhesion molecules. FASEB J 4: 2868–2880

    PubMed  CAS  Google Scholar 

  64. Hynes RO (1987) Interins, a family of cell surface receptors. Cell 48: 549–555

    Article  PubMed  CAS  Google Scholar 

  65. Hemler ME (1987) VLA proteins in the integrin family: structures, functions and their role on leucocytes. Ann Rev Cell Biol 3: 179–205

    Article  Google Scholar 

  66. Devalia JL, Calderon M, Sapsford RJ, McAulay AE, d’Ardenne AJ, Davies RJ (1991) Cell adhesion molecules expressed by human nasal epithelial cells. Clin Exp Allergy 22: 120 (abstract)

    Google Scholar 

  67. Devalia JL, Sapsford RJ, McAulay AE, d’Ardenne AJ, Davies RJ (1991) Comparison of cell adhesion molecules synthesised by human bronchial epithelial cells in vitro and in vivo.Schweiz Med Wsch 21 (Suppl 40/1): 48 (abstract)

    Google Scholar 

  68. Manolitsas ND, Trigg CJ, McAulay AE, Wang JH, Jordan SE, d’Ardenne AJ, DaviesRJ (1994) The expression of intercellular adhesion molecule-1 and the 131-integrins in asthma. Eur Respir J 7: 1439–1444

    Article  PubMed  CAS  Google Scholar 

  69. Kishimoto TK, Anderson DC (1992) The role of integrins in inflammation. In: JI Gallin, IM Goldstein, R Snyderman (eds): Inflammation: basic principles and clinical correlates, 2nd ed. Raven Press, New York, 353–406

    Google Scholar 

  70. Wegner CD, Gundel RH, Rothlein R, Letts G (1992) Expression and probable roles of cell adhesion molecules in lung inflammation. Chest 1015: 34–39

    Google Scholar 

  71. Calderon E, Lockey RF (1992) A possible role of adhesion molecules in asthma. J Allergy Clin Immunol 90: 852–865

    Article  PubMed  CAS  Google Scholar 

  72. Tosi MF, Stark JM, Smith CW, Hamedani A, Gruenert DC, Infeld MD (1992) Induction of ICAM-1 expression on human airway epithelial cells by inflammatory cytokines: effects on neutrophil-epithelial cell adhesion. Am J Respir Cell Mol Biol 7: 214–221

    PubMed  CAS  Google Scholar 

  73. Bloemen PGM, van den Tweel MC, Henricks PAJ, Engels F, Wagenaar SS, Rutten AAJJL, Nijkamp FP (1993) Expression and modulation of adhesion molecules on human bronchial epithelial cells. Am J Respir Cell Mol Biol 9: 586–593

    PubMed  CAS  Google Scholar 

  74. Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Martin SD, Springer TA (1989) A cell adhesion molecule, ICAM-1, is the major receptor for Rhinoviruses. Cell 56: 849–853

    Article  PubMed  CAS  Google Scholar 

  75. Dobrina A, Menegazzi R, Carlos TM, Nardon E, Cramer R, Zacchi T, Harlen JM, Patriarca P (1991) Mechanisms of eosinophils adherence to cultured vascular endothelial cells. J Clin Invest 88: 20–26

    Article  PubMed  CAS  Google Scholar 

  76. Wegner CD, Gundel RH, Reilly P, Haynes N, Letts G, Rothlein R (1990) Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science 247: 456–459

    Article  PubMed  CAS  Google Scholar 

  77. Keelan E, Hashard D (1992) CAMS and anti-CAMs. J Royal Coll Phys Lon 149: 4021–4028

    Google Scholar 

  78. Monterfort S, Feather IH, Wilson SJ, Haskard DO, Lee TH, Holgate ST, Howarth PH (1992) The expression of leukocyte-endothelial adhesion molecules is increased in perennial allergic rhinitis. Am J Respir Cell Mol Biol 7: 393–398

    Google Scholar 

  79. Hashimoto S, Imai K, Kobayashi T, Amemiya E, Takahashi Y, Tomita Y, Iwata T, Suguro H, Yamaguchi M, Yachi A (1993). Elevated levels of soluble ICAM-1 in sera from patients with bronchial asthma. Allergy 48: 370–372

    Article  PubMed  CAS  Google Scholar 

  80. Kobayashi T, Hashimoto S, Imai K, Amemiya E, Yamaguchi M, Yachi A, Horie T (1994) Elevation of serum soluble intercellular adhesion molecule-1 (sICAM-1) and sE-selectin levels in bronchial asthma. Clin Exp Immunol 96: 110–115

    Article  PubMed  CAS  Google Scholar 

  81. Montefort S, Lai CKW, Kapahi P, Leung J, Lai KN, Chan HS, Haskard DO, Howarth PH, Holgate ST (1994) Circulating adhesion molecules in asthma. Am J Respir Crit Care Med 149: 1149–1152

    PubMed  CAS  Google Scholar 

  82. Koizumi A, Hashimoto S, Kobayashi T, Imai K, Yachi A, Horie T (1995) Elevation of serum soluble vascular cell adhesion molecule-1 (sVCAM-1) levels in bronchial asthma. Clin Exp Immunol 101: 468–473

    Article  PubMed  CAS  Google Scholar 

  83. Komatsu T, Yamamoto M, Shimokata K, Nagura H (1989) Phenotypic characterisation of alveolar capillary endothelial cells, alveolar epithelial cells and alveolar macrophages in patients with pulmonary fibrosis, with special reference to MHC class II antigens.Virchows Arch 415: 79–90

    Article  CAS  Google Scholar 

  84. Liversidge JM, Sewell HF, Forrester JV (1988) Human retinal pigment epithelial cells differentially express MHC class II (HLA, DP, DR and DQ) antigens in response to in vitro stimulation with lymphokine or purified IFNy. Clin Exp Immunol 73: 489–494

    PubMed  CAS  Google Scholar 

  85. Motojima K, Matsuo S, Mullen Y (1989) DR antigen expression on vascular endothelium and duct epithelium in fresh or cultured human fetal pancreata in the presence of gamma-interferon. Transplantation 48: 1022–1026

    Article  PubMed  CAS  Google Scholar 

  86. Mosmann TR, Coffman RL (1989) Heterogeneity of cytokine secretion patterns and function of helper T cells. Adv Immunol 46: 111–147

    Article  PubMed  CAS  Google Scholar 

  87. Maggi E, Macchia D, Parronchi P, Del Prete G, De Carli M, Piccinni MP, Simonelli C, Biswas P, Romagnani S, Ricci M (1991) The IgE response in atopy and infections. Clin Exp Allergy 21 (Suppl 1): 72–78

    Article  PubMed  Google Scholar 

  88. Poston RN, Chanez P, Lacoste JY, Litchfield T, Lee TH, Bousquet J (1992) Immunohistochemical characterization of the cellular infiltrate in asthmatic bronchi. Am Rev Respir Dis 145: 918–921

    CAS  Google Scholar 

  89. Stoop AE, Hameleers DMH, v Run PEM, Biewenga J, van der Baan S (1989) Lymphocytes and non lymphoid cells in the nasal mucosa of patients with nasal polyps and of healthy subjects. J Allergy Clin Immunol 84: 734–741

    Article  PubMed  CAS  Google Scholar 

  90. Nag B, Kendrick T, Arimilli S, Yu SC, Sriram S (1996) Soluble MHC II-peptide complexes induce antigen-specific apoptosis in T cells. Cell Immunol 170: 25–33

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Devalia, J.L., Wang, J.H., Davies, R.J. (2000). Airway epithelial cells. In: Page, C.P., Banner, K.H., Spina, D. (eds) Cellular Mechanisms in Airways Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8476-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8476-1_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9583-5

  • Online ISBN: 978-3-0348-8476-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics