Skip to main content

Glutamate receptor ligands

  • Chapter
Anxiolytics

Part of the book series: Milestones in Drug Therapy ((MDT))

  • 159 Accesses

Abstract

During the past decade, pharmacological, electrophysiological, and molecular biological studies have yielded a detailed, albeit imperfect picture of the assembly and operation of NMDA receptors in the central nervous system. While a review of all aspects of NMDA receptor biology is clearly beyond the scope of this chapter, it is important to review, however briefly, the salient features of NMDA receptors of particular relevance to drug design and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clineschmidt B, Williams M, Witoslawski J, Bunting P, Risley A, Totaro J (1982) Restoration of shock-suppressed behavior by treatment with (+)-5-Methyl-10,11-dihydro-5Hdibenzo[a,d]cyclohepten-5,10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Develop Res 2: 147–163

    Article  CAS  Google Scholar 

  2. Wong E, Kemp J, Priestley T, Knight A, Woodruff G, Iversen L (1986) The anticonvulsant MK-801 is a potent N-methyl-D-Aspartate antagonist. Proc Natl Acad Sci USA 83: 7104–7108

    Article  PubMed  CAS  Google Scholar 

  3. Mori H, Mishina M (1995) Structure and function of the NMDA receptor channel. Neuropharmacology 34: 1219–1237

    Article  PubMed  CAS  Google Scholar 

  4. Nakanishi N, Axel R, Shneider NA (1992) Alternative splicing generates functionally distinct N-methyl-D-aspartate receptors. Proc Natl Acad Sci USA 89: 8552–8556

    Article  PubMed  CAS  Google Scholar 

  5. Zukin RS, Bennett MVL (1993) Alternatively spliced isoforms of the NMDAR1 receptor subunit. Trends Neurosci 18: 306–313

    Article  Google Scholar 

  6. Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357: 70–74

    Article  PubMed  CAS  Google Scholar 

  7. Ikeda K, Nagasawa M, Mori H, Araki K, Sakimura K, Watanabe M, Inoune Y, Mishina M (1992) Cloning and expression of the E4 subunit of the NMDA receptor channnel. FEBS Lett 313: 34–38

    Article  PubMed  CAS  Google Scholar 

  8. Boyer P-A, Skolnick P, Fossom LH (1998) Chronic administration of imipramine and citalopram alters the expression of NMDA receptor subunit mRNAs in mouse brain. J Mol Neurosci 10: 219–233

    Article  PubMed  CAS  Google Scholar 

  9. Watanabe M, Inoue Y, Sakimura K, Mishina M (1993) Distinct distributions of five N-methyl-Daspartate receptor channel subunit mRNAs in the forebrain. J Comp Neurol 338: 377–390

    Article  PubMed  CAS  Google Scholar 

  10. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg P (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12: 529–540

    Article  PubMed  CAS  Google Scholar 

  11. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368: 144–147

    Article  PubMed  CAS  Google Scholar 

  12. Chazot PL, Stephenson FA (1997) Molecular dissection of native mammalian forebrain NMDA receptors containing the NR1 C2 exon: direct demonstration of NMDA receptors comprising NR1, NR2A, and NR2B subunits within the same complex. J Neurochem 69: 2138–2144

    Article  PubMed  CAS  Google Scholar 

  13. Behe P, Wyllie DJ, Nasser M, Schoepfer D, Colquhoun D (1995) Determination of NMDAR1 subunit copy number in recombinant NMDA receptors. Proc R Soc Lond B 262: 205–213

    Article  CAS  Google Scholar 

  14. Luo J, Wang Y, Yasuda RP, Dunah AW, Wolfe BB (1997) The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Mol Pharmacol 51: 79–86

    PubMed  CAS  Google Scholar 

  15. Williams K, Zappia AM, Pritchett DB, Shen YM, Molinoff PB (1994) Sensitivity of the N-methyl-D-aspartate receptor to polyamines is controlled by NR2 subunits. Mol Pharmacol 45: 803–809

    PubMed  CAS  Google Scholar 

  16. Zhang L, Zheng X, Paupard MC, Wang AP, Santchi L, Friedman LK, Zukin RS, Bennett MVL (1994) Spermine potentiation of recombinant N-methyl-D-aspartate receptors is affected by subunit composition. Proc Natl Acad Sci USA 91: 10883–10887

    Article  PubMed  CAS  Google Scholar 

  17. Williams K (1993) Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 44: 851–859

    PubMed  CAS  Google Scholar 

  18. Patat A, Molinier P, Hergueta T, Brohier S, Zieleniuk I, Danjou P, Warot D, Puech A (1994) Lack of amnestic, psychotomimetic or impairing effect on psychomotor performance of eliprodil, a new NMDA antagonist. Int Clin Psychopharmacol 9: 155–162

    Article  PubMed  CAS  Google Scholar 

  19. Butler TW, Blake JF, Bordner J, Butler P, Chenard BL, Collins MA, DeCosta D, Ducat MJ, Eisenhard ME, Menniti FS et al (1998) (3R,4S)-3-[4-(4-fluorophenyl)-4-hyroxypiperidine-1yl]chroman-4,7-diol: a conformationally restricted analogue of the NR2B subtype-selective NMDA antagonist (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol. J Med Chem 41: 1172–1184

    Article  PubMed  CAS  Google Scholar 

  20. Wafford KA, Bain CJ, Le Bourdelles B, Whiting PJ, Kemp JA (1993) Preferential co-assembly of recombinant NMDA receptors composed of three different subunits. NeuroReport 4: 1347–1349

    Article  PubMed  CAS  Google Scholar 

  21. Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241: 835–837

    Article  PubMed  CAS  Google Scholar 

  22. Liebman JM, Bennett DA (1988) Anxiolytic actions of competitve N-methyl-D-aspartate receptor antagonist: A comparison with benzodiazepine modulators and dissociative anesthetics. In:E Cavalheiro, J Lehmann, L Turski (eds): Frontiers in excitatory amino acid research. Alan Liss, NY, 301–308

    Google Scholar 

  23. Bennett D, Arnrick C (1986) 2-amino-7-phosphonoheptanoic acid (AP7) produces discriminative stimuli and anticonflict effects similar to diazepam. Life Sci 39: 2455–2461

    Article  PubMed  CAS  Google Scholar 

  24. Stephens DN, Meldrum BS, Weidmann R, Schneider C, Grützner M (1986) Does the excitatory amino acid receptor antagonist 2-APH exhibit anxiolytic activity? Psychopharmacology 90: 166–169

    Article  PubMed  CAS  Google Scholar 

  25. Stephens DN, Andrews JS (1988) N-methyl-D-aspartate antagonism in animal models of anxiety. In: E Cavalhiero, J Lehmann, L Turski (eds): Frontiers in excitatory amino acid research. Alan Liss, NY

    Google Scholar 

  26. Xie ZC, Buckner E, Comissaris RL (1995) Anticonflict effect of MK-801 in rats: time course and chronic treatment studies. Pharmacol Biochem Behav 51: 635–640

    Article  PubMed  CAS  Google Scholar 

  27. Vogel J, Beer B, Clody D (1971) A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacology 21: 1–7

    Article  CAS  Google Scholar 

  28. Karcz-Kubicha M, Jessa M, Nazar M, Plaznik A, Hartmann S, Parsons CG, Danysz W (1997) Anxiolytic activity of glycine B antagonists and partial agonists — no relation to intrinsic activity in the patch clamp. Neuropharmacology 36: 1355–1367

    Article  PubMed  CAS  Google Scholar 

  29. Monaghan DT, Larsen H (1997) NR1 and NR2 subunit contributions to N-methyl-D-aspartate receptor channel blocker pharmacology. J Pharmacol Exp Ther 280: 614–620

    PubMed  CAS  Google Scholar 

  30. Rodgers RJ (1997) Animal models of “anxiety”: where next? Behav Pharmacol 8: 477–496

    Article  PubMed  CAS  Google Scholar 

  31. Kehne JE, Baron BM, Harrison BL, McCLoskey TC, Palfreyman MG, Poirot M, Salituro FG, Siegel BW, Slone AL, Van Giersbergen PL et al. (1995) MDL 100,458 and MLD 102,288: two potent and selective glycine receptor antagonists with different functional profiles. Eur J Pharmacol 284: 109–118

    Article  PubMed  CAS  Google Scholar 

  32. Hargreaves RJ, Rigby M, Smith D, Hill RG (1993) Lack of effect of L-687,414 (+)-cis-4-methylHA-966), an NMDA receptor antagonist acting at the glycine site, on cerebral glucose metabolism and cortical neuronal morphology. Brit J Pharmacol 110: 36–42

    Article  CAS  Google Scholar 

  33. Maccecchini ML (1995) Partial agonism and neuroprotection. In: J Grotta, LP Miller, AM Buchan (eds): Ischemic stroke: recent advances in understanding & therapy. International Business Communications, Southboro, 140–168

    Google Scholar 

  34. Trullas R, Jackson B, Skolnick P (1989) 1-Aminocyclopropanecarboxylic acid, a ligand of the strychnine-insensitive glycine binding site exhibits anxiolytic properties. Pharmacol Biochem Behav 34: 313–316

    Article  PubMed  CAS  Google Scholar 

  35. Corbett R, Dunn R (1991) Effects of HA-966 on conflict, social interaction, and plus maze behaviors. Drug Develop Res 24: 201–205

    Article  CAS  Google Scholar 

  36. Dunn R, Flanagan D, Martin L, Kerman L, Woods A, Camacho F, Wilmot C, Comfeldt M, Effland R, Wood P, Corbett R (1992) Stereoselective R-(+) enantoimer of HA-966 displays anxyiolytic effects in rodents. Eur J Pharmacol 214: 207–214

    Article  PubMed  CAS  Google Scholar 

  37. Kotflinska J, Liljequist S (1998) A characterization of the anxiolytic-like actions induced by the novel NMDA/glycine site antagonist, L-701,324. Psychopharmacology 135: 175–181

    Article  Google Scholar 

  38. Przegalinski E, Tatarcyzn’ska E, Deren’-Wesolek A, Chojnacka-Wo’jcik E (1996) Anticonflict actions of a competitive NMDA receptor antagonist and a partial agonist at strychnine-insensitive glycine receptors. Pharmacol Biochem Behav 54: 73–77

    Article  PubMed  CAS  Google Scholar 

  39. Koek W, Colpaert FC (1992) N-methyl-D-aspartate antagonism and phencyclidine like activity: behavioral effects of glycine site ligands. In:JC Kamenka, EF Domino (eds): Multiple sigma and PCP receptor ligands: mechanisms for neurmodulation and neuroprotection? NPP Books, Ann Arbor, 655–671

    Google Scholar 

  40. Winslow J, Insel T, Trullas R, Skolnick P (1990) Rat pup isolation calls are reduced by functional antagonists of the NMDA receptor complex. Eur J Pharmacol 190: 11–21

    Article  PubMed  CAS  Google Scholar 

  41. Anthony EW, Nevins ME (1993) Anxiolytic-like effects of N-methyl-D-aspartate-associated glycine receptor ligands in the rat potentiated startle test. Eur J Pharmacol 250: 317–324

    Article  PubMed  CAS  Google Scholar 

  42. Guimaraes FS, Carobrez AP, De Aguiar JC, Graeff FG (1991) Anxiolytic effect in the elevated plus-maze of the NMDA receptor antagonist AP-7 microinjected into the dorsal periaqueductal gray. Psychopharmacology 103: 91–94

    Article  PubMed  CAS  Google Scholar 

  43. Matheus MG, Nogueira RL, Carobrez AP, Graeff FG, Guimaraes FS (1994) Anxiolytic effect of glycine antagonists microinjected into the dorsal periaqueductal gray. Psychopharmacology 113: 565–569

    Article  PubMed  CAS  Google Scholar 

  44. DeSouza MM, Schenberg LC, de Padua Carobrez A (1998) NMDA-coupled periaqueductal gray glycine receptors modulate anxioselective drug effects on plus-maze performance. Behav Brain Res 90: 157–165

    Article  CAS  Google Scholar 

  45. Teixeira KV, Carobrez AP (1999) Effects of glycine or (+/–)-3-amino-l-hydroxy-2-pyrrolidone microinjections along the rostrocaudal axis of the dorsal periaqueductal gray matter on rats’ performance in the elevated plus-maze task. Behav Neurosci 113: 196–203

    Article  PubMed  CAS  Google Scholar 

  46. Jessa M, Nazar M, Plaznik A (1995) Anxiolytic-like action of intra-hippocampally administered NMDA antagonists in rats. Pol J Pharmacol 47: 81–84

    PubMed  CAS  Google Scholar 

  47. Plaznik A, Palejko W, Nazar M, Jessa M (1994) Effects of antagonists at the NMDA receptor complex in two models of anxiety. Eur Neuropsychopharmacol 4: 503–512

    Article  PubMed  CAS  Google Scholar 

  48. Jessa M, Nazar M, Plaznik A (1996) Effects of intra-accumbens blockade of NMDA receptors in two models of anxiety, in rats. Neurosci Res 19: 19–25

    Article  CAS  Google Scholar 

  49. Wiley JL, Balster RL (1992) Preclinical evaluation of N-methyl-D-aspartate antagonists for antianxiety effects: a review. In: J-M Kamenka, EF Domino (eds): Multiple sigma and PCP receptor ligands. NPP Books, Ann Arbor, 801–810

    Google Scholar 

  50. Hutson PH, Burton CL (1997) L-701,324, a glycine/NMDA receptor antagonist, blocks the increase of cortical dopamine metabolism by stress and DMCM. Eur J Pharmacol 326: 127–132

    Article  PubMed  CAS  Google Scholar 

  51. Ninan P, Insel T, Cohen R, Cook J, Skolnick P, Paul S (1982) Benzodiazepine receptor-mediated experimental “anxiety” in primates. Science 218: 1332–1334

    Article  PubMed  CAS  Google Scholar 

  52. Dorow R, Horowski R, Paschelke G, Amin M, Braestrup C (1983) Severe anxiety induced by FG 7142, a beta-carboline ligand for benzodiazepine receptors. Lancet i 98–99

    Article  Google Scholar 

  53. Corda MG, Blake WD, Mendelson WB, Guidotti A, Costa E (1983) b-Carbolines enhance shock-induced suppression of drinking in rats. Proc Natl Acad Sci USA 80: 2072–2076

    Article  PubMed  CAS  Google Scholar 

  54. Dunn R, Corbett R, Fieldings S (1989) Effect of 5-HT;-1A) receptor agonists and NMDA receptor antagonists in the social interaction test and the elevated plus maze. Eur J Pharmacol 169: 1–10

    Article  PubMed  CAS  Google Scholar 

  55. File S (1982) Animal anxiety and the effects of benzodiazepines. In:E Usdin, P Skolnick, J Tallman, D Greenblatt, S Paul (eds): Pharmacology of benzodiazepines. McMillan Press, London, 355–363

    Google Scholar 

  56. Insel TR, Hill JL, Mayor RB (1986) Rat pup ultrasonic isolation calls: possible mediation by the benzodiazepine receptor complex. Pharmacol Biochem Behav 24: 1263–1267

    Article  PubMed  CAS  Google Scholar 

  57. Graeff FG (1991) Neurotransmitters in the dorsal periaqueductal grey and animal models of panic anxiety. In:M Briley, SE File (eds): New concepts in anxiety. MacMillan, London, 288–312

    Google Scholar 

  58. Schmitt ML, Coelho W, Lopes-de-Souza AS, Guimaraes FS, Carobrez AP (1995) Anxiogenic-like effect of glycine and D-serine microinjected into dorsal periaqueductal gray matter of rats. Neurosci Lett 189: 93–96

    Article  PubMed  CAS  Google Scholar 

  59. Trullas R, Skolnick P (1993) Differences in fear motivated behaviors among inbred mouse strains. Psychopharmacology 111: 323–33160 Salt TE (1900) Modulation of th eNMDA receptor mediated responses by glycine and d-serine in the rat thalamus in vivo. Brain Res 481: 323–33160

    Google Scholar 

  60. Rao T, Cler J, Emmet M, Mick S, Iyengar S, Wood P (1990) Glycine, glycinamide, and D-serine act as positive modulators of signal tranduction at the N-methyl-D-aspartate (NMDA) receptor in vivo: Differential effects on mouse cerebellar cyclic guanosine monophosphate levels. Neuropharmacology 29: 1075–1080

    Article  PubMed  CAS  Google Scholar 

  61. Thomson AM, Walker VE, Flynn DM (1989) Glycine enhances NMDA-receptor mediated synaptic potentials in neurocortical slices. Nature 338: 422–424

    Article  PubMed  CAS  Google Scholar 

  62. Harvey S, Skolnick P (1999) Polyamine-like actions of aminoglycosides at recombinant N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 291: 281–285

    Google Scholar 

  63. Zafra F, Aragon C, Gimenez C (1997) Molecular biology of glycinergic neurotransmission. Mol Neurobiol 14: 117–142

    Article  PubMed  CAS  Google Scholar 

  64. Smith KE, Borden LA, Hartig PR, Branchek T, Weinshank RL (1992) Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron 8: 927–935

    Article  PubMed  CAS  Google Scholar 

  65. Borowsky B, Mezey E, Hoffman BJ (1993) Two glycine transporter variants with distinct localization in the CNS and peripheral tissues are encoded by a common gene. Neuron 19: 851–863

    Article  Google Scholar 

  66. Bergeron R, Meyer TM, Coyle JT, Greene RW (1998) Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci USA 95: 15730–15734

    Article  PubMed  CAS  Google Scholar 

  67. Woods J, France C, Hartman J, Baron S, Cook J (1988) Similarity of the discriminative stimulus effects of N-methyl-D-aspartate and beta-carboline ethyl ester in pigeons. In: E Cavalheiro, J Lehmann, L Turski (eds): Frontiers in excitatory amino acid research. Alan Liss, NY, 317–323

    Google Scholar 

  68. Trullas R, Winslow J, Insel T, Skolnick P (1991) Are glutamatergic pathways involved in the pathophysiology of anxiety. In: M Briley, S File (eds): New concepts in anxiety, Pierre Fabre Monograph Series edn, vol 4. Macmillan Press, London, 382–394

    Google Scholar 

  69. Schoepp DD, Conn PJ (1993) Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 14: 13–20

    Article  PubMed  CAS  Google Scholar 

  70. Battaglia G, Monn JA, Schoepp DD (1997) In vivo inhibition of veratridine-evoked release of striatal excitatory amino acids by the group II metabotropic glutamate receptor agonist LY354740 in rats. Neurosci Lett 229: 161–164

    Article  PubMed  CAS  Google Scholar 

  71. Scanzfani M, Salin PA, Vogt KE, Malenka RC, Nicoll RA (1997) Use-dependent increases in glutamate concentrations activate presynaptic metabotropic glutamate receptors. Nature 385: 630–634

    Article  Google Scholar 

  72. Schoepp DD, Monn JA, Marek GJ, Aghajanian G, Moghaddam B (1999) LY354740: A systemically active mGlu2/3 receptor agonist. CNS Drug Rev 5: 1–12

    Article  CAS  Google Scholar 

  73. Monn JA, Valli MJ, Massey SM, Wright RA, Salhoff CR, Johnson BG, Howe T, Alt CA, Rhodes GA, Robey RL, Griffey KR, Tizzano JP, Kallman MJ, Helton D R, Schoepp DD (1997) Design, synthesis and pharmacological characterization of (+)-2-Aminobicyclo-[3.1.0.]hexane-2,6-dicarboxylic acid (LY 354740): a potent, selective, and orally active group 2 metabotropic glutamate receptor antagonist possessing anticonvulsant and anxiolytic properties. JMed Chem 40: 528–537

    Article  CAS  Google Scholar 

  74. Helton DR, Tizzano DR, Monn JA, Schoepp DD, Kallman MJ (1998) Anxiolytic and side-effect profile of LY 354740: a potent, highly selective, orally active agonist for Group II metabotropic glutamate receptors. J Pharmacol Exp Ther 284: 651–660

    PubMed  CAS  Google Scholar 

  75. Helton DR, Tizzano JP, Monn JA, Schoepp DD, Kallman MJ (1997) LY 354740: a metabotropic glutamate receptor agonist which ameliorates symptoms of nicotine withdrawal in rats. Neuropharmacol 36: 1511–1516

    Article  CAS  Google Scholar 

  76. Klodzinska A, Chojnacka-Wojcik E, Palucha A, Branski P, Popik P, Pile A (1999) Potential anti-anxiety and anti-addictive effects of LY 354740, a selective group II glutamate metabotropic receptor agonist in animal models. Neuropharmacology 38: 1831–1839

    Article  PubMed  CAS  Google Scholar 

  77. Benvenga MJ, Overshiner CD, Monn JA, Leander JD (1999) Disinhibitory effects of LY354740, a new mGluR2 agonist, on behaviors suppressed by electric shock. Drug Dev Res 47: 37–44

    Article  CAS  Google Scholar 

  78. Parsons CG, Danysz W, Quack G (1998) Glutamate in CNS Disorders as a target for drug development: an update. Drug News Perspect 11: 523–569

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Skolnick, P. (2000). Glutamate receptor ligands. In: Briley, M., Nutt, D. (eds) Anxiolytics. Milestones in Drug Therapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8470-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8470-9_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9581-1

  • Online ISBN: 978-3-0348-8470-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics