Skip to main content

Mammalian target of rapamycin: Immunosuppressive drugs offer new insights into cell growth regulation

  • Conference paper
  • 171 Accesses

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

In this “enlightened” era of drug development, molecular targets are validated on the basis of their relevance to specific disease states, and screening assays are developed to identify small molecule-or peptide-derived modulators of the selected target’s function. However, the more classical paradigm, in which the clinical application of new compounds frequently preceded detailed studies of their molecular mechanisms of action, has not been entirely abandoned. Relevant examples are the natural product immunosuppressive agents, cyclosporine A, FK506, and rapamycin. These drugs (cyclosporine A and FK506 in particular) had already made indelible marks on the clinical field of organ transplantation by the time that bench scientists had begun to unravel the molecular pharmacology underlying their effects on immune responses. Remarkably, the insights provided by basic investigations into the cellular mechanisms of action of the immunosuppressants have been as impressive as the results obtained with these drugs in the clinical arena. In each case, the availability of the immunosuppressant enabled investigators to uncover novel and largely unexpected pathways of intracellular signaling. Ongoing research using cyclosporine A, FK506, and rapamycin as pharmacologic probes continues to yield new information relevant to the clinical management of organ transplants, autoimmune diseases, inflammation, and even cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pardee AB (1989) G1 events and the regulation of cell proliferation. Science 246: 603–640

    Article  PubMed  CAS  Google Scholar 

  2. Abraham RT, Wiederrecht GJ (1996) Immunopharmacology of rapamycin. Ann Rev Immunol 14: 483–510

    Article  CAS  Google Scholar 

  3. Schreiber SL, Crabtree GR (1992) The mechanism of action of cyclosporin A and FK506. Immunol Today 13: 136–142

    Article  PubMed  CAS  Google Scholar 

  4. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369: 756–758

    Article  PubMed  CAS  Google Scholar 

  5. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78: 35–43.

    Article  PubMed  CAS  Google Scholar 

  6. Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT (1995) Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270: 815–822

    Article  PubMed  CAS  Google Scholar 

  7. Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN (1994) TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Molec Biol Cell 5: 105–118

    PubMed  CAS  Google Scholar 

  8. Heitman J, Movva NR, Hall MN (1992) Proline isomerases at the crossroads of protein folding, signal transduction, and immunosuppression. New Biologist 4: 448–460

    PubMed  CAS  Google Scholar 

  9. Cafferkey R, Young PR, McLaughlin MM, Bergsma DJ, Koltin Y, Sathe GM, Faucette L, Eng WK, Johnson RK, Livi GP (1993) Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol 13: 6012–6023

    PubMed  CAS  Google Scholar 

  10. Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN (1993) Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73: 585–596

    Article  PubMed  CAS  Google Scholar 

  11. Zheng XF, Florentino D, Chen J, Crabtree GR, Schreiber SL (1995) TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 82: 121–130

    Article  PubMed  CAS  Google Scholar 

  12. Stan R, McLaughlin MM, Cafferkey R, Johnson RK, Rosenberg M, Livi GP (1994) Interaction between FKBP12-rapamycin and TOR involves a conserved serine residue. J Biol Chem 269: 32027–32030

    PubMed  CAS  Google Scholar 

  13. Chen J, Zheng XF, Brown EJ, Schreiber SL (1995) Identification of an 11-kDa FKBP12rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA 92: 4947–4951

    Article  PubMed  CAS  Google Scholar 

  14. Lorenz MC, Heitman J (1995) TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem 270: 27531–27537

    Article  PubMed  CAS  Google Scholar 

  15. Keith CT, Schreiber SL (1995) PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270: 50–51

    Article  PubMed  CAS  Google Scholar 

  16. Abraham RT (1996) Phosphoinositide 3-kinase related kinases. Curr Op Immunol 8: 412–418

    Article  CAS  Google Scholar 

  17. Hunter T (1995) When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell 83: 1–4

    Article  PubMed  CAS  Google Scholar 

  18. McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD (1998) The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94: 363–374

    Article  PubMed  CAS  Google Scholar 

  19. Morice WG, Brunn GJ, Wiederrecht G, Siekierka JJ, Abraham RT (1993) Rapamycininduced inhibition of p34cdc2 kinase activation is associated with Gl/S-phase growth arrest in T lymphocytes. J Biol Chem 268: 3734–3738

    PubMed  CAS  Google Scholar 

  20. Morice WG, Wiederrecht G, Brunn GJ, Siekierka JJ, Abraham RT (1993) Rapamycin inhibition of interleukin-2-dependent p33cdk2 and p34cdc2 kinase activation in T lymphocytes. J Biol Chem 268: 22737–22745

    PubMed  CAS  Google Scholar 

  21. Lawrence JC Jr, Abraham RT (1997) PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem Sci 22: 345–349

    Article  PubMed  CAS  Google Scholar 

  22. Proud CG (1996) p70 S6 kinase: an enigma with variations. Trends Biochem Sci 21: 181–185

    PubMed  CAS  Google Scholar 

  23. Pullen N, Thomas G (1997) The modular phosphorylation and activation of p70s6k. FEBS Lett 410: 78–82

    Article  PubMed  CAS  Google Scholar 

  24. Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL (1995) Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377: 441–446

    Article  PubMed  CAS  Google Scholar 

  25. Sonenberg N, Gingras AC (1998) The mRNA 5’ cap-binding protein eIF4E and control of cell growth. Curr Op Cell Biol 10: 268–275

    Article  PubMed  CAS  Google Scholar 

  26. Pain VM (1996) Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 236: 747–771

    Article  PubMed  CAS  Google Scholar 

  27. Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, Sonenberg N (1995) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 371: 762–767

    Article  Google Scholar 

  28. Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA, Lawrence JC Jr (1995) cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc Natl Acad Sci USA 92: 7222–7226

    Article  PubMed  CAS  Google Scholar 

  29. Lin TA, Kong X, Saltiel AR, Blackshear PJ, Lawrence JC Jr (1995) Control of PHAS-I by insulin in 3T3–L1 adipocytes. Synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. J Biol Chem 270:18531–18538

    Article  PubMed  CAS  Google Scholar 

  30. Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N (1996) Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 15: 658–664

    PubMed  CAS  Google Scholar 

  31. Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC, Abraham RT (1997) Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277: 99–101

    Article  PubMed  CAS  Google Scholar 

  32. Brunn GJ, Fadden P, Haystead TA, Lawrence JC Jr (1997) The mammalian Target of Rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus. J Biol Chem 272: 32547–32550

    Article  PubMed  CAS  Google Scholar 

  33. Fadden P, Haystead TA, Lawrence JC Jr (1997) Identification of phosphorylation sites in the translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J Biol Chem 272: 10240–10247

    Article  PubMed  CAS  Google Scholar 

  34. Gingras AC, Kennedy SG, O’Leary MA, Sonenberg N, Hay N (1998) 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes Dey 12: 502–513

    Article  CAS  Google Scholar 

  35. Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC Jr (1998) Evidence of insulin-stimulated phosphorylation and activation of mammalian target of rapamycin by a protein kinase B signaling pathway. Proc Natl Acad Sci USA 95: 7772–7777

    Article  PubMed  CAS  Google Scholar 

  36. Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC Jr, Abraham RT (1996) Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 15: 5256–5267

    PubMed  CAS  Google Scholar 

  37. Sarkaria JN, Tibbetts RS, Busby EC, Kennedy AP, Hill DE, Abraham RT (1998) Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res 58: 4375–4382

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Abraham, R.T. (2000). Mammalian target of rapamycin: Immunosuppressive drugs offer new insights into cell growth regulation. In: Letts, L.G., Morgan, D.W. (eds) Inflammatory Processes:. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8468-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8468-6_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9580-4

  • Online ISBN: 978-3-0348-8468-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics