Skip to main content

Wasp Kinins and Kinin Analogues

  • Chapter
Animal Toxins

Part of the book series: Methods and Tools in Biosciences and Medicine ((MTBM))

  • 235 Accesses

Abstract

Due to the powerful venoms secreted by bees, social wasps, and ants, all belonging to the order of the Hymenoptera, these insects appear early in man’s history and prehistory (Piek, 1986). According to Westwood (1840) the Hymenoptera are distinguished as an order from other insects by the number, the comparative size and the structure of the wings, the mandibulated mouth enclosing the labium ensheated by the maxillae, the ovipositor, or the sting, and the nature of their metamorphosis. In the modern literature the Hymenoptera are normally divided into the suborders Symphyta and Apocrita. The Symphyta are phytophagous Hymenoptera, the females of which deposit their eggs in plant tissues. Haviland (1922) suggested that the evolutionary ancestors of Apocrita might have laid eggs in or nearby other plant parasitic larvae and may have become in this way parasitic on these insects. This would then represent the first evolutionary step in the development of the hymenopteran venom system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blum MS, Hermann HR (1978) Venoms and venom apparatus of the Formicidae, Arthropod Venoms (Bettini S, ed) pp 801–869: Berlin: Springer

    Chapter  Google Scholar 

  • Brothers DJ (1975) Phylogeny and classification of the aculeate Hymenoptera, with special reference to Mutillide. Univ Kans Sc Bull 50: 483–648

    Google Scholar 

  • Callec JJ, Sattelle DB, Hue B et al (1980) Central synaptic actions of pharmacological agents in insects: oil-gap and manitol-gap studies. Neurotox 19 (Sherwood M, ed) pp 93–100: New York: Plenum Press

    Google Scholar 

  • Dray A, Perkins M (1993) Bradykinin and infammatory pain. Trends Neurosci 16: 99–104

    Article  PubMed  CAS  Google Scholar 

  • Capek R (1962) Some effects of bradykinin on the central nervous system. Biochem Pharmacol. 10: 61–64

    CAS  Google Scholar 

  • Elliot DF (1970) The discovery and characterization of bradykinin. Handbook exp. Pharmacol. 25: 7–13

    Google Scholar 

  • Elliot PJ, Hayward NJ, Huft MR et al (1996) Unlocking the blood-brain barrier: a role for RMP-7 in brain tumor therapy. Exp. Neurol. 141: 204–224

    Google Scholar 

  • Ferreira SH, Vane JR (1967) The disappearrance of bradykinin and eledoisin in the circulation and vascular beds of the cat. Brit. J. Pharmacol. 30: 417–424

    PubMed  CAS  Google Scholar 

  • Frey EK, Kraut H (1928) Ein neues Kreislaufhormon and seine Wirking. Naunyn-Schmiedeberg’s Arch. Exp. Pathol. Pharamacol. 133: 1–56

    CAS  Google Scholar 

  • Gobbo M, Biondi L, Filira F et al (1994) Synthesis and biological activity of some linear and cyclic kinin analogues. Int J Peptide Protein Res. 44: 1–9

    Article  CAS  Google Scholar 

  • Gobbo M, Biondi L, Filira F et al (1995a) Cyclic analogues of wasp kinins from Vespa analis and Vespa tropica. Int. J. Peptide Protein Res. 45: 282–289

    Article  CAS  Google Scholar 

  • Gobbo M, Biondi L, Filira F et al (1995b) Cyclic analogues of Thr6-bradykinin, N’-Lysbradykinin and endo -Lys8a vespulakinin 1. Int. J. Peptide Protein Res. 45: 459–465

    Article  CAS  Google Scholar 

  • Gobbo M, Biondi L, Filira F et al (1996) Linear and cyclic Tyr6- and Trp6-kallidin (Lys-bradykinin) analogues. Gazzetta Chimica Italiana 126: 359–363

    CAS  Google Scholar 

  • Harris CL, Smyth T (1971) Structural details of cockroach grant axons revealed by injection dye. Comp. Biochem. Physiol. 40: 295–304

    Article  Google Scholar 

  • Haviland MD (1922) On the post-embryonic development of certain chalchids, hyper-parasites of Aphids. Q. J. Micros. Sci. 66: 321–338

    Google Scholar 

  • Hock FJ, Wirth U, Albus W et al (1991) HOE 140 a new potent and long acting bradykinin antagonist. Brit. J. Pharmacol 102: 769–773

    Article  CAS  Google Scholar 

  • Hue B, Piek T (1988) Effects of kinins and related peptides on synaptic transmission in the insect CNS. Neurotox 88: Molecular Basis of Drugs and Pesticide Action. (Lunt G.G., ed) pp 27–33: Amsterdam: Elsevier

    Google Scholar 

  • Hue B, Piek T (1989) Irreversible presynaptic activation-induced block of transmission in the insect CNS by hemicholineum-3 and threonine6 bradykinin. Comp. Biochem. Physiol. 93C: 87–89

    CAS  Google Scholar 

  • Jaques R, Schachter M (1954) The presence of histamine, 5-hydroxytryptamine and a potent. Slow contracting substance in wasp venom. Br. J. Pharmacol. 9: 53–57

    CAS  Google Scholar 

  • Lammek B, Wang Yi-Xin, Gravas I et al (1990) A new highly potent antagonist of bradykinin. Peptides 11: 1041–1043

    Article  PubMed  CAS  Google Scholar 

  • Milner-White EJ (1989) Predicting the biologically active conformations of short polypeptides. TIPS 10: 70–74

    PubMed  CAS  Google Scholar 

  • Moniusko-Jakonick J, Wisniewski K, Koscielak M (1976) Investigations of the mechanism of central actions of kinins. Psychopharmacol. 50: 181–186

    Article  Google Scholar 

  • Nakajima T (1986) Pharmalogical biochemistry of vespid venoms. Venoms of the Hymenoptera (Piek T., ed) pp 309–327: London: Academic Press

    Google Scholar 

  • Piek T (1986) Venoms of the bumble bees and carpenter bees. Venoms of the Hymenoptera (Piek T, ed) pp 417–424: London: Academic Press

    Google Scholar 

  • Piek T (1986) Historical introduction. Venoms of the Hymenoptera (Piek T, ed) pp 1–16: London: Academic Press

    Google Scholar 

  • Piek T (1991) Chemistry, Isolation and Microbioassays of Arthropod Neurotoxins. Pesticide Chemistry (Frehse H, ed.) pp 75–85: Weinheim, VCH

    Google Scholar 

  • Piek T (1992) A toxinological argument in favour of the close relationship of Vespidae, Scoliidae, Tiphiidae, Mutillidae, and Formicidae (Hymenoptera). Proc. Exper. Appl. Entomol. 3: 99–104

    Google Scholar 

  • Piek T, Buitenhuis A, Simon Thomas RT et al (1983) Smooth muscle contracting compounds in the venom of Megascolia flavifrons (Hym: Scoliidae). Comp. Biochem. Physiol. 75C: 145–152

    CAS  Google Scholar 

  • Piek T, Hue B, Mony L et al (1987) Block of synaptic transmission in insect CNS by toxins from the venom of the wasp Megascolia flavifrons (Fab.) Comp. Biochem. Physiol. 87C: 287–295

    CAS  Google Scholar 

  • Piek T, Hue B, Mantel P et al (1990) Threonine6-bradykinin in the venom of the wasp Colpa interrupta (F) presynaptically blocks nicotinic transmission in the insect CNS. Comp. Biochem. Physiol. 96C: 157–162

    CAS  Google Scholar 

  • Piek T, Gobbo M, Mantel P et al (1996) B2-kininergic action of linear and cyclic trytophan - and tyrosine6-kallidin. Life Sci 59: 391–397

    Article  Google Scholar 

  • Schachter M, Thain EM (1954) Chemical and pharmacological properties of the potent slow contracting substance (kinin) in wasp venom. Br. J. Pharmacol. 9: 352–359

    CAS  Google Scholar 

  • Schmidt JO (1986) Chemistry, pharmacology, and chemical ecology of ant venom. Venoms of the Hymenoptera. (Piek T, ed) pp 425–507: London: Academic Press

    Google Scholar 

  • Tallarida RJ, Jacob LS (1979) The Dose-Response Relation in Pharmacology. Berlin: Springer

    Book  Google Scholar 

  • Toki T, Nakajima T, Yasuhara T (1988) Isolation and sequential analysis of peptides on the venom sac of Parapolybia indica. Jpn. J. San. Zool. 39: 105–111

    CAS  Google Scholar 

  • Westwood JO (1840) An Introduction to the Modern Classification of Insects. London: Longman, Orme, Brown, Green, and Longmans

    Google Scholar 

  • Wisniewski K, Bodzenta A (1975) Kinins and central effects on the acetylcholine. Acta Neurobiol. Exp. 35: 85–92

    CAS  Google Scholar 

  • Yasuhara T, Mantel P, Nakajima T et al (1987) Two kinins isolated from an extract of the venom reservoirs of the solitary wasp Megascolia flavifrons. Toxicon 25: 527–535

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Piek, T. (2000). Wasp Kinins and Kinin Analogues. In: Rochat, H., Martin-Eauclaire, MF. (eds) Animal Toxins. Methods and Tools in Biosciences and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8466-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8466-2_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6020-7

  • Online ISBN: 978-3-0348-8466-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics