Skip to main content

Nemertine Toxins

  • Chapter

Part of the book series: Methods and Tools in Biosciences and Medicine ((MTBM))

Abstract

Nemertines are a generally toxic phylum of carnivorous worms which are rarely observed by marine biologists as they are generally of small size (0.5-3 cm is a common length) and usually hide under rocks or burrow in sand and mud. Over 800 species have been described by taxonomists (Gibson, 1972). Most inhabit the intertidal zone, although others occur in a variety of other habitats including land, freshwater and the open sea. Being soft-bodied and unable to rapidly escape from predators, they produce integumentary toxins which serve as a chemical defense against predators (Kern, 1971, 1985, 1988a). The phylum is roughly divided into two large groups, the hoplonemertines which possess a proboscis stylet (mineralized armature), and the anoplans, which lack a stylet. The hoplonemertine stylet is used to puncture the skin of the prey (usually annelids or crustaceans) at multiple sites, thus facilitating entry of toxins into the circulatory system of the organism The relative scarcity of nemertines in most marine habitats makes them relatively difficult to collect. Another problem is species identification, as the external morphologies of some species are so similar that the preparation of tissue sections for histological examination may be necessary. Nonetheless, this phylum represents an unusually rich source of toxins, including alkaloids, peptides, and proteins, most still awaiting investigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arendash GW, Sengstock GJ, Sanberg R, Kem WR (1995) Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 674: 252–259

    Article  PubMed  CAS  Google Scholar 

  • Bacq ZM (1937) L’“amphiporine” et la “nemertine,” poisons des vers nemertiens. Arch. Int. Physiol. 44: 190–204

    Article  CAS  Google Scholar 

  • Barnham KJ, Dyke TR, Kern WR, Norton RS (1997) Structure of neurotoxin B-IV from the marine worm Cerebratulus lacteus: a helical hairpin cross-linked by disulphide bonding. J. Mol. Biol. 268: 886–902

    Article  PubMed  CAS  Google Scholar 

  • Bjugstad KB, Mahnir VM, Kern WR, Arendash GW (1996) Long-term treatment with GTS-21 or nicotine enhances water maze performance in aged rats without affecting the density of nicotinic receptor subtypes in neocortex. Drug Devel. Res. 39: 19–28

    Article  CAS  Google Scholar 

  • Bloom LB (1990) Influence of solvent on the ring-chain hydrolysis equilibrium of anabaseine and synthesis of anabaseine and nicotine analogues. Ph.D. Dissertation, University of Florida

    Google Scholar 

  • Blumenthal KM (1980a) Inactivation of Cerebratulus lacteus toxin B-IV concomitant with tryptophan alkylation. Arch. Biochem. Biophys. 203: 822–826

    Article  CAS  Google Scholar 

  • Blumenthal KM (1980b) Disulfide bonds of Cerebratulus lacteus toxin A-III. J. Biol Chem. 255: 8273–8274

    CAS  Google Scholar 

  • Blumenthal KM (1982) Structure and action of heteronemertine toxins: membrane penetration of Cerebratulus lacteus: toxin A-III. Biochem. 21: 4229–4233

    Article  CAS  Google Scholar 

  • Blumenthal KM (1984) Release of liposomal markers by Cerebratulus lacteus toxin A-III. Biochem. Biophys. Res. Commun. 121: 14–18

    CAS  Google Scholar 

  • Blumenthal KM, Kem WR. (1976) Primary structure of Cerebratulus lacteus toxin B-IV. J. Biol. Chem. 251: 6025–6029

    PubMed  CAS  Google Scholar 

  • Blumenthal KM, Kern WR (1977) Disulfide bonds of Cerebratulus lacteus toxin B-IV. J. Biol. Chem. 252: 3328–3331

    PubMed  CAS  Google Scholar 

  • Blumenthal KM, Kern WR (1980a) Inactivation of Cerebratulus lacteus toxin B-IV by tyrosine nitration. Arch. Biochem. Biophys. 203: 816–821

    Article  CAS  Google Scholar 

  • Blumenthal KM, Kern WR (1980b) Primary structure of Cerebratulus lacteus toxin A-III. J. Biol. Chem. 255: 8266–8272

    CAS  Google Scholar 

  • Blumenthal KM, Keim PS, Heinrikson RL, Kern WR (1981) Structure and action of heteronemertine polypeptide toxins. Amino acid sequence of Cerebratulus lacteus toxin B-II and revised structure of toxin B-IV. J. Biol. Chem. 256: 9063–9067

    PubMed  CAS  Google Scholar 

  • Briggs CA, Anderson DJ, Brioni JD et al (1997) Functional characterization of the novel neuronal nicotinic acetylcholine reeceptor ligand GTS-21 Vitro and Vivo. Pharmacol. Biochem. Behay. 57: 231–241

    Article  CAS  Google Scholar 

  • De Fiebre CM, Meyer EM, Henry JC et al (1995) Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-Dimethylaminocinnamylidine derivative (DMAC) is a selective agonist at neuronal nicotinic alpha 7/[125K] alpha-Bungarotoxin receptor subtypes. Mol. Pharmacol. 47: 164–171

    PubMed  Google Scholar 

  • Gibson, R (1972) Nemerteans. London: Hutchinson University Library

    Google Scholar 

  • Hansen PE, Kem WR, Bieber AL, Norton RS (1992) 1H-NMR study of neurotoxin B-N from the marine worm Cerebratulus lacteus. Solution properties, sequence-specific resonance assignments, secondary structure and global fold. Eur. J. Biochem. 210: 231–240

    Article  PubMed  CAS  Google Scholar 

  • Hatt H, Schmiedel-Jacob I (1984) Electrophysiological studies of pyridine-sensitive units on the crayfish walking leg. I. Characteristics of stimulatory molecules. J. Comp. Physiol. 154A: 855–863

    Article  Google Scholar 

  • Howell ML, Blumenthal KM (1989) Cloning and expression of a synthetic gene for Cerebratulus lacteus neurotoxin B-IV. J. Biol. Chem. 264: 15268–15273

    PubMed  CAS  Google Scholar 

  • Howell ML, Blumenthal KM (1991) Mutagen-esis of Cerebratulus lacteus neurotoxin B-IV identifies NH2-terminal sequences important for biological activity. J. Biol. Chem. 266: 12884–12888

    PubMed  CAS  Google Scholar 

  • Kem WR (1969) A Chemical Investigation of Nemertine Toxins. Ph.D. Dissertation, University of Illinois (Urbana)

    Google Scholar 

  • Kern WR (1971) A study of the occurrence of anabaseine in Paranemertes and other nemertines. Toxicon 9: 23–32

    Article  Google Scholar 

  • Kern WR (1973) Biochemistry of Nemertine Toxins, Marine Pharmacognosy: Marine Biotoxins as Probes of Cellular Function (Martin, D.F, Padilla, G. M, Eds.). Monographs on Cell Biology Series, pp 37–84: New York Academic Press

    Google Scholar 

  • Kern WR (1976) Purification and characterization of a new family of polypeptide neurotoxins from the heteronemertine Cerebratulus lacteus (Leidy). J. Biol. Chem. 251: 4184–4192

    Google Scholar 

  • Kern WR (1985) Structure and action of ne-mertine toxins. Am Zoologist 2: 99–111

    Google Scholar 

  • Kern WR (1988a) Worm toxins. Handbook of Natural Toxins, vol 4: Marine Toxins and Venoms (Tu, ed). pp 253–378: Marcel Dekker

    Google Scholar 

  • Kern WR (1988b) Peptide chain toxins of marine animals. Biomedical Importance of Marine Organisms (Fautin, D, ed) Mem. Calif. Acad. Sci. 13: 69–83

    Google Scholar 

  • Kern WR (1988c) Pyridine alkaloid distribution in the hoplonemertines. Hydrobiol. 156: 145–151

    Article  Google Scholar 

  • Kern WR (1994) Structure and membrane actions of a marine worm cytolysin, Cerebratulus toxin A-III. Toxicology 87: 189–203

    Article  Google Scholar 

  • Kent WR (1998) Alzheimer’s drug design based upon an invertebrate toxin (anabaseine) which is a potent nicotinic receptor antagonist. Invertebrate Neurosci (in press)

    Google Scholar 

  • Kern WR (1997) Nemertine body wall and proboscis longitudinal muscles possess unique nicotinic receptors. Fifth Intern. Conf. Invertebrate Neurochem. Neurophysiol. Mtg, Eilat, Israel (Abstr.)

    Google Scholar 

  • Kern WR, Abbott BC, Coates RM (1971) Isolation and structure of a hoplonemertine toxin. Toxicon 9: 15–22

    Article  Google Scholar 

  • Kern WR, Blumenthal KM (1978) Purification and characterization of the cytotoxic Cerebratulus A toxins. J. Biol. Chem. 253: 5725–5757

    Google Scholar 

  • Kern WR, Scott KN, Duncan JH (1976) Ho-plonemertine worms: a new source of pyridine neurotoxins. Experientia 32: 684–686

    Article  Google Scholar 

  • Kern WR, Tu C-K, Williams RW et al (1990) Circular dichroism and laser Raman spectroscopic analysis of the secondary structure of Cerebratulus lacteus toxin B-IV. J. Prot. Chem. 9: 433–443

    Article  Google Scholar 

  • Kem WR, Mahnir VM, Bloom LB, Gabrielson BJ (1994) The active form of the nicotinic receptor agonist anabaseine is the cyclic iminium cation. 11th World Congress on Animal, Plant, and Microbial Toxins, Tel Aviv

    Google Scholar 

  • Kern WR, Mahnir VM, Papke R, Lingle C (1997) Anabaseine is a potent agonist upon muscle and neuronal alpha-bungarotoxin sensitive nicotinic receptors. J. Pharmacol. Exper. Therap. 283: 979–992

    Google Scholar 

  • Kuo JF, Raynor RL, Mazzei GJ et al (1983) Cobra polypeptide cytotoxin I and marine worm polypeptide cytotoxin A-IV are potent and selective inhibitors of phospholipid sensitive Ca2+-dependent protein kinase. FEBS Lett. 153: 183–186

    Article  PubMed  CAS  Google Scholar 

  • Lieberman DL, Blumenthal KM (1986) Structure and action of heteronemertine polypeptide toxins. Specific cross-linking of Cerebratulus lacteus toxin B-IV to lobster axon memebrane vesicles. Biochim. Biophys. Acta 855: 1–48

    Article  Google Scholar 

  • Liu J, Blumenthal KM (1988a) Membrane damage by Cerebratulus lacteus cytolysin A-III: effects of monovalent and divalent cations on A-III hemolytic activity. Biochim. Biophys. Acta 937: 153–160

    Article  CAS  Google Scholar 

  • Liu J, Blumenthal KM (1988b) Functional interaction between Cerebratulus lacteus cytolysin A-III and phospholipase A2: implications for the mechanism of cytolysis. J. Biol. Chem. 263: 6619–6624

    CAS  Google Scholar 

  • Liu J, Blumenthal KM (1991) Identification of oleic acid binding sites in cytolysin A-III from the heteronemertine Cerebratulus lacteus. Toxcon 29: 13–20

    Article  CAS  Google Scholar 

  • Machu TK, Strahlendorf J, Kem WR (1996) Nicotinic receptor ligands antagonize 5- HT3 receptors expressed in Xenopus oocytes. J. Neurosci. 22: 1780

    Google Scholar 

  • Mahnir VM, Lin B, Prokai-Tatrai K, Kem WR (1998) Pharmacokinetics and urinary excretion of DMXBA (GTS-21), a compound enhancing cognition. Biopharm. Drug Dispos (in press)

    Google Scholar 

  • Martin EJ, Panickar KS, King MA et al (1994) Cytoprotective actions of 2: 4-dimethoxybenzylidene anabaseine in differentiated PC12 cells and septal cholinergic neurons. Drug Dev. Res. 31: 135–141

    Article  CAS  Google Scholar 

  • Meyer EM, de Fiebre CM, Hunter BE et al (1994) Effects of anabaseine related analogs on rat brain nicotinic receptor binding and on avoidance behavior. Drug Dev. Res. 31: 135–141

    Article  Google Scholar 

  • Meyer EM, Tay ET, Papke RL et al (1997) 3[2: 4-Dimethoxybenzylidene[anabaseine (DMXB) selectively activates rat alpha7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner. Brain Res. 768: 49–56

    Article  PubMed  CAS  Google Scholar 

  • Spath E, Mamoli L (1936) Eine Neue Synthese Des D,L-Anabasins. Chem. Ber. 69: 1082–1085

    Google Scholar 

  • Summers K, Kern WR, Giacobini E (1997) Nicotinic agonist modulation of neurotransmitter levels in the rat frontoparietal cortex. Jap. J. Pharmacol. 74: 139–146

    CAS  Google Scholar 

  • Wen PH, Blumenthal KM (1996) Role of electrostatic interactions in defining the potency of neurotoxin B-IV from Cerebratulus lacteus. J. Biol. Chem. 271: 29752–29758

    Article  PubMed  CAS  Google Scholar 

  • Wheeler JW, Olubajo O, Storm CB, Duffield RM (1981) Anabaseine: venom alkaloid of Aphaenogaster ants. Science 211: 1051–1052

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse RJ, Price DL, Clark AW et al (1986) Nicotinic acetylcholine binding in Alzheimer’s disease. Brain Res. 371: 146–151

    Article  PubMed  CAS  Google Scholar 

  • Woodruff-Pak DS, Li Y-T, Kem WR (1994) A nicotinic receptor agonist (GTS-21), eye-blink classical conditioning, and nicotinic receptor binding in rabbit brain. Brain Res. 645: 309–317

    Article  PubMed  CAS  Google Scholar 

  • Zoltewicz JA, Cruskie MP Jr (1995) A superior synthesis of cholinergic anabaseine. OPPI Briefs 27: 510–513

    CAS  Google Scholar 

  • Zoltewicz JA, Bloom LB, Kem WR (1989) Quantitative determination of the ring-chain hydrolysis equilibrium constant for anabaseine and related tobacco alkaloids. J. Org. Chem. 54: 4462–4468

    Article  CAS  Google Scholar 

  • Zoltewicz JA, Prokai-Tatrai K, Bloom LB, Kern WR (1993) Long range transmission of polar effects of cholinergic 3-arylideneanabaseines. Conformations calculated by molecular modelling. Heterocycles 35: 171–179

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Kem, W.R. (2000). Nemertine Toxins. In: Rochat, H., Martin-Eauclaire, MF. (eds) Animal Toxins. Methods and Tools in Biosciences and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8466-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8466-2_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6020-7

  • Online ISBN: 978-3-0348-8466-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics