Skip to main content

Inhibitors of the MAPK pathway

  • Chapter
  • 109 Accesses

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The mitogen-activated protein kinase (MAPK) family of protein kinases is a series of three highly conserved protein kinases arrayed in a cascade. Members of this family are proline-directed serine/threonine kinases that are activated by dual-phosphorylation. MAPK belong to the rapidly growing family of mammalian protein kinases. Less than 200 mammalian protein kinases were known in 1994. As of 1998, more than 700 distinct mammalian protein kinases have been identified by genomic technologies and estimates are that the human genome encodes around 2000 protein kinases. MAPK impact many cellular processes such as proliferation, oncogenesis, development and differentiation, cell cycle and cell death [14],. Selective inhibition of signal transduction processes has been considered by many pharmaceutical companies as an approach to disease management [5]. Two of the best-characterized anti-inflammatory drugs in patients, rapamycin and cyclosporin, act by directly affecting protein phosphorylation. Multiple clinical trials are underway with specific kinase inhibitors, in particular PKC and tyrosine kinase inhibitors. Therefore, targeting MAPK with therapeutics may be an effective way for treating a large number of diseases. This chapter will review the current field of biological and small molecule inhibitors of MAPKs. The authors recommend as starting point the following reviews on inhibitors of protein kinases [615].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunter T, Karin M (1992) The regulation of transcription by phosphorylation. Cell 70:375–387

    Article  PubMed  CAS  Google Scholar 

  2. Hunter T (1995) Protein kinases and phosphatases: The Yin and Yang of protein phos-phorylation and signaling. Cell 80: 225–236

    Article  PubMed  CAS  Google Scholar 

  3. Karin M, Hunter T (1995) Transcriptional control by protein phosphorylation: signaltransmission from the cell surface to the nucleus. Curr Biology 5: 747–757

    Article  CAS  Google Scholar 

  4. Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, Rakic P, Flavell RA (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389: 865–870

    Article  PubMed  CAS  Google Scholar 

  5. Levitzki A (1994) Signal transduction interception as a novel approach to disease man-agement. Ann NY Acad Sci 766: 363–368.

    Article  Google Scholar 

  6. Stein B, Anderson D (1996) The MAP kinase family: new “MAPs” for signal transduc-tion pathways and novel targets for drug discovery. In: JA Bristol (ed): Annual Reports in Medicinal Chemistry. Academic Press, San Diego, 289–298

    Google Scholar 

  7. Clarke PR (1994) Switching off MAP kinases. Curr Opin 4: 647–650

    Article  CAS  Google Scholar 

  8. Lee JC, Adams JL (1995) Inhibitors of serine/threonine kinases. Curr Opin Biotech 6:657–661

    Article  PubMed  CAS  Google Scholar 

  9. Taylor SS, Radzio-Andzelm E (1997) Protein kinase inhibition: natural and synthetic variation on a theme. Curr Opin Chem Biol 1: 219–226

    Article  PubMed  CAS  Google Scholar 

  10. Hemmings HCJ (1997) Protein kinase and phosphatase inhibitors: applications in neuroscience. Neuromethods 30: 112–218

    Google Scholar 

  11. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9: 726–735

    PubMed  CAS  Google Scholar 

  12. Cooper JA (1994) Straight and narrow or tortuos and intersecting? Curr Biology 4: 1118–1121

    Article  CAS  Google Scholar 

  13. Cano E, Mahadevan LC (1995) Parallel signal processing among mammalian MAPKs. Trends Biochem 20: 117–122

    Article  CAS  Google Scholar 

  14. McMahon G, Sun L, Liang C, Tang C (1998) Protein kinase inhibitors: structural determinants for target specificity. Current Opinion in Drug Discovery & Development 1: 131-146

    CAS  Google Scholar 

  15. Bhagwat S, Manning A, Hoekstra MF, Lewis A (1999) Gene regulating protein kinases as important anti-inflammatory targets. Drug Disc Today; in press

    Google Scholar 

  16. Hanks SK, Quinn AM (1991) Protein kinase catalytic domain sequence database: Identification of conserved features of primary structure and classification of family members. Methods Enzym 200: 38–62

    Article  CAS  Google Scholar 

  17. Cohen P, Goedert M (1998) Engineering protein kinases with distinct nucleotide specificities and inhibitor sensitivities by mutation o fa single amino acid. Chem & Biol 5: R161–164

    Article  CAS  Google Scholar 

  18. Zhang F, Strand A, Robbins D, Cobb MH, Goldsmith EJ (1994) Atomic structure of the MAP kinase ERK2 at 2.3 Å resolution. Nature 367: 704–711

    Article  PubMed  CAS  Google Scholar 

  19. Wang Z, Harkins PC, Ulevitch RJ, Han J, Cobb MH, Goldsmith EJ (1997) The structure of mitogen-activated protein kinase p38 at 2.1- Å resolution. Proc Natl Acad Sci USA 94: 2327–2332

    Article  PubMed  CAS  Google Scholar 

  20. Wilson KP, Fitzgibbon MJ, Caron PR, Griffith JP, Chen W, McCaffrey PG, Chambers SP, Su MS-S (1996) Crystal structure of p38 mitogen-activated protein kinase. J Biol Chem 271: 27696–27700

    Article  PubMed  CAS  Google Scholar 

  21. Xie X, Gu Y, Fox T, Coll JT, Fleming MA, Markland W, Caron PR, Wilson KP, Su MSS (1998) Crystal structure of JNK3: a kinase implicated in neuronal apoptosis. Structure 6: 983–991

    Article  PubMed  CAS  Google Scholar 

  22. Cobb MH, Goldsmith EJ (1995) How MAP kinases are regulated. J Biol Chem 270: 14843–14846

    Article  PubMed  CAS  Google Scholar 

  23. Tong L, Pay S, White DM, Rogers S, Crane KM, Cywin CL, Brown ML, Pargellis CA (1997) A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Nat Struct Biol 4: 311–316

    Article  PubMed  CAS  Google Scholar 

  24. Wilson KP et al (1997) The structural basis for the specificity of pyridinylimidazole inhibitors of p38 MAP kinase. Chem Biol 4: 423–431

    Article  PubMed  CAS  Google Scholar 

  25. Sánchez I, Hughes RT, Mayer BJ, Yee K, Woodgett JR, Avruch J, Kyriakis JM, Zon LI (1994) Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature 372: 794–798

    PubMed  Google Scholar 

  26. Yashar BM, Kelley C, Yee K, Errede B, Zon LI (1993) Novel members of the mitogenactivated protein kinase activator family in Xenopus laevis. Mol Cell Biol 13: 5738–5748

    CAS  Google Scholar 

  27. Dérijard B, Raingeaud J, Barrett T, Wu I-H, Han J, Ulevitch RJ, Davis RJ (1995) Independent human MAP kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267: 682–685

    Article  PubMed  Google Scholar 

  28. Lin A, Minden A, Martinetto H, Claret F-X, Lange-Carter C, Mercurio F, Johnson GL, Karin M (1995) Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268: 286–290

    Article  PubMed  CAS  Google Scholar 

  29. Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL (1993) A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260: 315–319

    Article  PubMed  CAS  Google Scholar 

  30. Yan M, Dai T, Deak JC, Kyriakis JM, Zon LI, Woodgett JR, Templeton DJ (1994) Acti-vation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature 372: 798–800

    PubMed  CAS  Google Scholar 

  31. Blank JL, Gerwins P, Elliott EM, Sather S, Johnson GL (1996) Molecular cloning of mitogen-activated protein/ERK kinase kinases (MEKK) 2 and 3. J Biol Chem 271: 5361–5368

    Article  PubMed  CAS  Google Scholar 

  32. Salmerón A, Ahmad TB, Carlile GW, Pappin D, Narsimhan RP, Ley SC (1996) Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase kinase kinase. EMBO J 15: 817–826

    PubMed  Google Scholar 

  33. Dérijard B, Hibi M, Wu I-H, Barrett T, Su B, Deng T, Karin M, Davis RJ (1994) JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025–1037

    Article  PubMed  Google Scholar 

  34. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369: 156–160

    Article  PubMed  CAS  Google Scholar 

  35. Minden A, Lin A, Smeal T, Dérijard B, Cobb M, Davis R, Karin M (1994) c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases. Mol Cell Biol 14: 6683–6688

    PubMed  CAS  Google Scholar 

  36. Adler V, Schaffer A, Kim J, Dolan L, Ronai Z (1995) UV irradiation and heat shock mediate JNK activation via alternate pathways. J Biol Chem 270: 26071–26077

    Article  PubMed  CAS  Google Scholar 

  37. Cano E, Hazzalin CA, Mahadevan LC (1994) Anisomycin-activated protein kinases p45 and p55 but not mitogen-activated protein kinases ERK-1 and -2 are implicated in the induction of c-fos and c-jun. Mol Cell Biol 14: 7352–7362

    PubMed  CAS  Google Scholar 

  38. Westwick JK, Weitzel C, Minden A, Karin M, Brenner DA (1994) Tumor necrosis factor α stimulates AP-1 activity through prolonged activation of the c-Jun kinase. J Biol Chem 269: 26396–26401

    PubMed  CAS  Google Scholar 

  39. Mohit AA, Martin JH, Miller CA (1995) p493F12 kinase: A novel MAP kinase expressed in a subset of neurons in the human nervous system. Neuron 14: 67–78

    Article  PubMed  CAS  Google Scholar 

  40. Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, Flavell RA (1998) Defective T cell differentiation in the absence of Jnkl. Science 282: 2092–2095

    Article  PubMed  CAS  Google Scholar 

  41. Yang DD, Conze D, Whitmarsh AJ, Barrett T, Davis RJ, Rincon M, Flavell RA (1998) Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity 9: 575–585

    Article  PubMed  CAS  Google Scholar 

  42. Dickens M, Rogers JS, Cavanagh J, Taitano A, Xia Z, Halpern JR, Greenberg ME, Sawyers CL, Davis RJ (1997) A cytoplasmic inhibitor of the JNK signal tranduction pathway. Science 277: 693–696

    Article  PubMed  CAS  Google Scholar 

  43. Whitmarsh AJ, Cavanagh J, Tournier C, Yasuda J, Davis RJ (1998) A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281: 1671–1674

    Article  PubMed  CAS  Google Scholar 

  44. Bost F, McKay R, Dean N, Mercola D (1997) The Jun kinase/stress-activated protein kinase pathway is required for epidermal growth factor stimulation of growth of human A549 lung carcinoma cells. J Biol Chem 272: 33422–33429

    Article  PubMed  CAS  Google Scholar 

  45. Chien S, Shyy JY-J (1997) Therapeutic methods for vascular injury using inhibition of the Ras signal transduction pathways. USA patent WO 97-US20404

    Google Scholar 

  46. Wojtasz CA ek PA, Heasley LE, Siriwardana G, Berl T (1998) Dominant-negative c-Jun NH2-terminal kinase 2 sensitizes renal inner medullary collecting duct cells to hypertonicity-induced lethality independent of organic osmolyte transport. J Biol Chem 273: 800–804

    Article  Google Scholar 

  47. Shim J, Lee H, Park K, Kim H, Choi E-J (1996) A non-enzymatic p21 protein inhibitor of stress-activated protein kinases. Nature 381: 804–807

    Article  PubMed  CAS  Google Scholar 

  48. Levitzki A, Gazit A (1995) Tyrosine kinase inhibition: an approach to drug development. Science 267: 1782–1788

    Article  PubMed  CAS  Google Scholar 

  49. Lee JC et al (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739–746

    Article  PubMed  CAS  Google Scholar 

  50. Gallagher TF et al (1997) Regulation of stress-induced cytokine production by pyridinylimidazoles; inhibition of CSBP kinase. Bioorg Med Chem 5: 49–64

    Article  PubMed  CAS  Google Scholar 

  51. Herbert JM, Sedan E, Maffrand JP (1990) Characterization of specific binding sites for [3H]-staurosporine on various protein kinases. Biochem Biophys Res Commun 171: 189–195

    Article  PubMed  CAS  Google Scholar 

  52. Hoffman R, Dennis IF, Donaldson J (1995) Protein binding modulates inhibition of the epidermal growth factor recptor kinase and DNA synthesis by tyrphosptins. Cancer Chemother Pharmacol 36: 316–324

    Article  PubMed  CAS  Google Scholar 

  53. Whitmarsh AJ, Yang H-H, Su MS-S, Sharrocks AD, Davis RJ (1997) Role of p38 and JNK mitogen-activated protein kinases in the activation of ternary complex factors. Mol Cell Biol 17: 2360–2371

    PubMed  CAS  Google Scholar 

  54. Cuenda A, Touse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC (1995) SB203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 364: 229–233

    Article  PubMed  CAS  Google Scholar 

  55. Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J (1996) Characterization of the structure and function of a new mitogen-activated protein kinase (p38ß). J Biol Chem 271: 17920–17926

    Article  PubMed  CAS  Google Scholar 

  56. Gum RJ et al (1998) Acquisition of sensitivity of stress-activated protein kinases to the p38 inhibitor, SB203580 by alteration of one or more amino acids within the ATP binding pocket. J Biol Chem 273: 15605–15610

    Article  PubMed  CAS  Google Scholar 

  57. Clerk A, Sugden PH (1998) The p38-MAPK inhibitor SB203580, inhibits cardiac stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs). FEBS Lett 426: 93–96

    Article  PubMed  CAS  Google Scholar 

  58. LoGrasso PV, Frantz B, Rolando AM, O’Keefe SJ, Hermes JD, O’Neill EA (1997) Kinetic mechanism for p38 MAP kinase. Biochemistry 36: 10422–10427

    Article  PubMed  CAS  Google Scholar 

  59. Young PR et al (1997) Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. J Biol Chem 272: 12116–12121

    Article  PubMed  CAS  Google Scholar 

  60. So HS, Park RK, Kim HS, Lee SR, Jung BH, Chung SY, Jun CD, Chung HT (1998) Nitric oxide inhibits c-Jun N-terminal kinase 2 (JNK2) bia S-nitrosylation. Biochem Biophys Res Commun 247: 809–813

    Article  PubMed  CAS  Google Scholar 

  61. Swantek JL, Cobb MH, Geppert TD (1997) Jun N-terminal kinases/stress-activated protein kinases (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necro-sis factor a (TNF-a) translation: glucocorticoids inhibit TNF-a transation by blocking JNK/SAPK. Mol Cell Biol 17: 6274–6282

    PubMed  CAS  Google Scholar 

  62. Borasio GD, Horstmann S, Anneser JMH, Neff NT, Glicksman MA (1998) CEP1347/KT7515, A JNK pathway inhibitor, supports the in vitro survival of chick embryonic neurons. NeuroReport 9: 1435–1439

    Article  PubMed  CAS  Google Scholar 

  63. Glicksman MA et al (1998) CEP-1347/KT7515 prevents motor neuronal programmed cell death and injury-induced dedifferentiation in vivo. J Neurobiol 35: 361–370

    Article  CAS  Google Scholar 

  64. Maroney AC et al (1998) Motoneuron apoptosis is blocked by CEP-1347 (KT 7515), a novel inhibitor of the JNK signaling pathway. J Neurosci 18: 104–111

    PubMed  CAS  Google Scholar 

  65. Chen Y-R, Tan T-H (1998) Inhibition of the cJun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene 17: 173–178

    Article  PubMed  CAS  Google Scholar 

  66. Ishizuka T, Sakata N, Johnson GL, Gelfand EW, Terada N (1997) Rapamycin potentiates dexamethasone-induced apoptosis and inhibits JNK activity in lymphoblastoid cells. Biochem Biophys Res Commun 230: 386–391

    Article  PubMed  CAS  Google Scholar 

  67. Matsuda S, Moriguchi T, Koyasu S, Nishida E (1998) T lymphocyte activation signals for interleukin-2 production involve activation of MKK6-p38 and MKK7-SAPK/JNK signaling pathways sensitive to cyclosporin A. J Biol Chem 273: 12378–12382

    Article  PubMed  CAS  Google Scholar 

  68. Lee H-Y, Walsh GL, Dawson MI, Hong WK, Kurie HM (1998) All-trans retinoic acid inhibits Jun N-terminal kinase-dependent signaling pathways. J Biol Chem 273: 7066–7071

    Article  PubMed  CAS  Google Scholar 

  69. Haga N, Naito M, Seimiya H, Tomida A, Dong J, Tsuruo T (1998) 2-Deoxyglucose inhibits chemotherapeutic drug-induced apoptosis in human monocytic leukemia U937 cells with inhibition of c-Jun N-terminal kinase 1/stress-activated protein kinase activation. Int J Cancer 76: 86–90

    Article  PubMed  CAS  Google Scholar 

  70. Dong Z, Huang C, Brown RE, Ma W-Y (1997) Inhibition of activator protein 1 activity and neoplastic transformation by aspirin. J Biol Chem 272: 9962–9970

    Article  PubMed  CAS  Google Scholar 

  71. Ma W-Y, Huang C, Dong Z (1998) Inhibition of ultraviolet C irradiation-induced AP-1 activity by aspirin is through inhibition of JNKs but not Erks or p38 MAP kinase. Int J Oncol 12: 565–568

    PubMed  CAS  Google Scholar 

  72. Frantz B, O’Neill EA (1995) The effect of sodium salicylate and aspirin on NF-kB. Science 270: 2017–2018

    Article  PubMed  CAS  Google Scholar 

  73. Han J, Richter B, Li Z, Kravchenko V, Ulevitch RJ (1995) Molecular cloning of human p38 MAP kinase. Biochim Biophys Acta 1265: 224–227

    Article  PubMed  Google Scholar 

  74. Cuenda A, Alonso G, Morrice N, Jones M, Meier R, Cohen P, Nebreda AR (1996) Purification and cDNA cloning of SAPKK3, the major activator of RK/p38 in stress-and cytokine-stimulated monocytes and epithelial cells. EMBO J 15: 4156–4164

    PubMed  CAS  Google Scholar 

  75. Stein B, Yang MX, Young DB, Janknecht R, Hunter T, Murray BW, Barbosa MS (1997) p38–2, a novel mitogen-activated protein kinase with distinct properties. J Biol Chem 272: 19509–19517

    Article  PubMed  CAS  Google Scholar 

  76. Wang XS et al (1997) Molecular cloning and characterization of a novel p38 mitogenactivated protein kinase. J Biol Chem 272: 23668–23674

    Article  PubMed  CAS  Google Scholar 

  77. Lechner C, Zahalka MA, Giot J-F, Møller NPH, Ullrich A (1996) ERK6, a mitogen-acti-vated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci USA 93: 4355–4359

    Article  PubMed  CAS  Google Scholar 

  78. Stein B, Brady H, Yang MX, Young DB, Barbosa MS (1996) Cloning and characterization of MEK6, a novel member of the MAP kinase kinase cascade. J Biol Chem 271: 11427–11433

    Article  PubMed  CAS  Google Scholar 

  79. Goedert M, Cuenda A, Craxton M, Jakes R, Cohen P (1997) Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases. EMBO J 16: 3563–3571

    Article  PubMed  CAS  Google Scholar 

  80. Han J, Lee J-D, Jiang Y, Li Z, Feng L, Ulevitch RJ (1996) Characterization of the structure and function of a novel MAP kinase kinase (MKK6). J Biol Chem 271: 2886–2891

    Article  PubMed  CAS  Google Scholar 

  81. Moriguchi T et al (1996) A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3. J Biol Chem 271: 13675–13679

    Article  PubMed  CAS  Google Scholar 

  82. Enslen H, Raingeaud J, Davis RJ (1998) Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem 273:1741–1748

    Article  PubMed  CAS  Google Scholar 

  83. Tibbles LA, Ing YL, Kiefer F, Chan J, Iscove N, Woodgett JR, Lassam NJ (1996) MLK3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO J 15: 7026–7035

    PubMed  CAS  Google Scholar 

  84. Fan G, Merritt SE, Kortenjann M, Shaw PE, Holzman LB (1996) Dual leucine zipper-bearing kinase (DLK) activates p46 SAPK and p38 MAPK but not ERK2. J Biol Chem 271: 24788–24793

    Article  PubMed  CAS  Google Scholar 

  85. Guan Z, Buckman SY, Pentland AP, Templeton DJ, Morrison AR (1998) Induction of cyclooxygenase-2 by the activated MEKK1 → SEK1/MKK4 → p38 mitogen-activated protein kinase pathway. J Biol Chem 273: 12901–12908

    Article  PubMed  CAS  Google Scholar 

  86. Ichijo H et al (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275: 90–94

    Article  PubMed  CAS  Google Scholar 

  87. Zhang S, Han J, Sells MA, Chernoff J, Knaus UG, Ulevitch RJ, Bokoch GM (1995) Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pakl. J Biol Chem 270: 23934–23936

    Article  PubMed  CAS  Google Scholar 

  88. Lee JC, Badger AM, Griswold DE, Dunnington D, Truneh A, Votta B, White JR, Young PR, Bender PE (1993) Bicyclic imidazoles as a novel class of cytokine biosynthesis inhibitors. Ann NY Acad Sci 696: 149–170

    Article  PubMed  CAS  Google Scholar 

  89. Hanson GJ, Gunner J (1997) Inhibitors of p38 kinase. Expert Opinion in Therapeutic Patents 7: 729–733

    Article  CAS  Google Scholar 

  90. Boehm JC et al (1996) 1-substituted 4-aryl-5-pyridinylimidazoles: a new class of cytokine suppressive drugs with low 5-lipoxygenase and cyclooxygenase inhibitory potency. J Med Chem 39: 3929–3937

    Article  PubMed  CAS  Google Scholar 

  91. Badger AM, Bradbeer JN, Votta B, Lee JC, Adams JL, Griswold DE (1996) Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. J Pharmacol Exp Ther 279: 1453–1461

    PubMed  CAS  Google Scholar 

  92. Jackson JR, Bolognese B, Hillegass L, Kassis S, Adams J, Griswold DE, Winkler JD (1998) Pharmacological effects of SB 220025, a selective inhibitor of P38 mitogen-activated protein kinase, in angiogenesis and chronic inflammatory disease models. J Pharmacol Exp Ther 284: 687–692

    PubMed  CAS  Google Scholar 

  93. Adams JL et al (1998) Pyrimidinylimidazole inhibitors of CSBP/p38 kinase demonstrating decreased inhibition of hepatic cytochrome P450 enzymes. Bioorg Med Chem Lett 8: 3111–3116

    Article  PubMed  CAS  Google Scholar 

  94. de Laszlo SE et al (1998) Pyrroles and other heterocycles as inhibitors of p38 kinase. Bioorg Med Chem Lett 8: 2689–2694

    Article  PubMed  Google Scholar 

  95. Zablocki J, Tarlton E Jr, Rizzi J, Mando N (1998) Aryl and heteroaryl substituted fused pyrrole antiinflammatory agents. Patent WO 9822457

    Google Scholar 

  96. Dodd JH, Henry JR, Rupert K (1998) Preparation of substituted pyrrolopyridines for the treatment of inflammatory diseases. Patent WO 9847899

    Google Scholar 

  97. Henry JR et al (1998) 6-Amino-2-(4-fluorophenyl)-4-methoxy-3-(4-pyridyl)-1H-pyrrolo[2, 3-b]pyridine (RWJ 68354): a potent and selective p38 kinase inhibitor. J Med Chem 41: 4196–4198

    Article  PubMed  CAS  Google Scholar 

  98. Henry JR, Rupert KC, Dodd JH, Turchi IJ, Wadsworth SA, Cavender DE, Schafer PH, Siekierka JJ (1998) Potent inhibitors of the MAP kinase p38. Bioorg Med Chem Lett 8: 3335–3340

    Article  PubMed  CAS  Google Scholar 

  99. Yamamoto N, Sakai F, Yamazaki H, Kawai Y, Nakahara K, Okuhara M (1996) Effect of FR133605, a novel cytokine suppressive agent, on bone and cartilage destruction in adjuvant arthritic rats. J Rheumatol 23: 1778–1783

    PubMed  CAS  Google Scholar 

  100. Yamamoto N, Sakai F, Yamazaki H, Nakahara K, Okuhara M (1996) Effect of FR167653, a cytokine suppressive agent, on endotoxin-induced disseminated intravascular coagulation. Eur J Pharmacol 314: 137–142

    Article  PubMed  CAS  Google Scholar 

  101. Yamamoto N, Sakai F, Yamazaki H, Sato N, Nakahara K, Okuhara M (1997) FR167653, a dual inhibitor of interleukin-1 and tumor necrosis factor-alpha, ameliorates endotoxin-induced shock. Eur J Pharmacol 327: 169–174

    Article  PubMed  CAS  Google Scholar 

  102. Kobayshi J, Takeyoshi I, Ohwada S, Iwanami K, Matsumoto K, Muramoto M, Morishita Y (1998) The effects of FR167653 in extended liver resection with ischemia in dogs. Hepatology (Philadelphia) 28: 459–465

    CAS  Google Scholar 

  103. Hoshida SY N, Tanouchi J, Yamada Y, Kuzuya T, Hori M (1998) The effect of FR- 167653 in an extended liver resection with ischemia. J Am Coll Cardiol 31: 279A

    Article  Google Scholar 

  104. Boehm JC, Chan GW (1998) Preparation of indole-3-carbonyl piperidides and analogs as proinflammatory cytokine inhibitors. Patent WO 9828292

    Google Scholar 

  105. Bemis G, Salituro F, Duffy JP, Cochran JE, Harrington EM, Murcko M, Su M, Galullo VP (1998) Preparation of annelated pyrimidinones and analogs as p38 kinase inhibitors. Patent WO 9827098

    Google Scholar 

  106. Tracey K, Cohen P, Bukrinsky M, Schmidtmayerova H (1998) Guanylhydrazones useful for treating diseases associated with T-cell activation. Patent WO 9820868

    Google Scholar 

  107. Ranges G et al (1998) Inhibition of p38 kinase activity by aryl ureas. Patent WO 9852558

    Google Scholar 

  108. Boulton TG et al (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65: 663–675

    Article  PubMed  CAS  Google Scholar 

  109. Cobb MH, Robbins DJ, Boulton TG (1991) ERKs, extracellular signal-regulated MAP-2 kinases. Curr Opin Cell Biol 3: 1025–1032

    Article  PubMed  CAS  Google Scholar 

  110. Haycock JW, Ahn NG, Cobb MH, Krebs EG (1992) ERK1 and ERK2, two microtubuleassociated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proc Natl Acad Sci USA 89: 2365–2369

    Article  PubMed  CAS  Google Scholar 

  111. Catling AD, Schaeffer H-J, Reuter CWM, Reddy GR, Weber MJ (1995) A proline-rich sequence unique to MEK1 and MEK2 is required for Raf binding and regulates MEK function. Mol Cell Biol 15: 5214–5225

    PubMed  CAS  Google Scholar 

  112. Wu X, Noh SJ, Zhou G, Dixon JE, Guan K-L (1996) Selective activation of MEK1 but not MEK2 by A-Raf from epidermal growth factor-stimulated HeLa cells. J Biol Chem 271: 3265–3271

    Article  PubMed  CAS  Google Scholar 

  113. Glass DB, Cheng HC, Mende-Mueller L, Reed J, Walsh DA (1989) Primary structural determinants essential for potent inhibition of cAMP-dependent protein kinase by inhibitory peptides corresponding to the active portion of the heat-stable inhibitor protein. J Biol Chem 264: 8802–8810

    PubMed  CAS  Google Scholar 

  114. Zaheer A, Lim R (1996) In vitro inhibition of MAP kinase (ERK1/ERK3) activity by phosphorylated glia maturation factor (GMF). Biochem 35: 6283–6288

    CAS  Google Scholar 

  115. Duesbery NS et al (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280: 734–737

    Article  PubMed  CAS  Google Scholar 

  116. Horiuchi KY, Scherle PA, Trzaskos JM, Copeland RA (1998) Competitive inhibition of MAP Kinase Activation by a Peptide Representing the aC Helix of ERK. Biochem 37: 8879–8885

    Article  CAS  Google Scholar 

  117. Boland A, Cornelis GR (1998) Role of YopP in suppression of tumor necrosis factor alpha release by macophages during Yersinia infection. Infect Immun 66: 1878–1884

    CAS  Google Scholar 

  118. Meggio F et al (1995) Different susceptibility of protein kinases to staurosporine inhibition. Kinetic studies and molecular bases for the resistance of protein kinase CK2. Eur J Biochem 234: 317–322

    Article  PubMed  CAS  Google Scholar 

  119. Vesely J et al (1994) Inhibition of cyclin-dependent kinases by purine analogs. Eur J Biochem 224: 771–786

    Article  PubMed  CAS  Google Scholar 

  120. Meijer L, Borgne A, Mulner O, Chong JPJ, Blow JJ, Inagaki N, Inagaki M, Delcros JG, Moulinoux JP (1997) Biochemical and cellular effects of roscovitine, a poten and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2, and cdk5. Eur J Biochem 243: 527–536

    Article  PubMed  CAS  Google Scholar 

  121. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92: 7686–7689

    Article  PubMed  CAS  Google Scholar 

  122. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR (1995) PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270: 27489–27494

    CAS  Google Scholar 

  123. Favata MF et al (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273: 18623–18632

    Article  PubMed  CAS  Google Scholar 

  124. DeSilva DR, Jones EA, Favata MF, Jaffee BD, Magolda RL, Trzaskos JM, Scherle PA (1998) Inhibition of mitogen-activated protein kinase kinase blocks T cell proliferation but does not induce or prevent anergy. J Immunol 160: 4175–4181

    PubMed  CAS  Google Scholar 

  125. Williams DH, Wilkinson SE, Purton T, Lamont A, Flotow H, Murray EJ (1998) Ro 092210 exhibits potent anti-proliferative effects on activated T cells by selectively blocking MKK activity. Biochemistry 37: 9579-9585

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Murray, B.W., Satoh, Y., Stein, B. (2000). Inhibitors of the MAPK pathway. In: Kahn, M. (eds) High Throughput Screening for Novel Anti-Inflammatories. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8462-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8462-4_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9578-1

  • Online ISBN: 978-3-0348-8462-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics