Skip to main content

Interleukin 5

  • Conference paper
  • 66 Accesses

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Most chronic inflammatory diseases have been treated for several years now with steroids and anti-inflammatory drugs. While these treatment have certainly been effective the broad pharmacological effects of these treatments can lead to side effects. However, the advances made in the area of dissecting the pathogenesis of chronic diseases at the cellular and molecular level has, for the first time, provided the opportunity to target cell-specific molecules. Asthma, in particular, is a chronic inflammatory disease that has been studied in great detail. It is now well-accepted that the number of many types of inflammatory cells are increased in asthma and could be responsible for the tissue destruction and clinical sequelae. Eosinophils, for instance, by virtue of their large numbers in pulmonary inflammatory infiltrates and their destructive potential probably play a very significant role. Over the last ten to fifteen years, the understanding of T cell biology has increased dramatically and many inflammatory diseases such as asthma are being seen as having a significant pathogenic component at the level of T cell reactivity. Asthma is characterized by a polarized T helper cell response, and a number of studies both in animal models and human subjects indicate that the predominant T helper cell involved in allergic disease is the TH2 cell type. T helper subsets can be divided into two major subtypes, the TH1 subtype being primarily responsible for cell mediated immunity and the TH2 for the humoral response including IgE. TH1 cells can be identified based on the release of IL-2 and IFNγ and the TH2 subtype on the secretion of IL-4, IL-5 and IL-10.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wardlaw AJ, Dunnette S, Gleich GJ, Collins JV, Kay AB (1988) Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am Rev Respir Dis 137: 62–69

    Article  PubMed  CAS  Google Scholar 

  2. Gleich GJ, Kita H, Adolphson CR (1995) Eosinophils. In: MN Frank, KF Austen, HN Cloman, ER Unanue (eds): Samters immunologic diseases. Little Brown, Boston, 205

    Google Scholar 

  3. Gulbenkian AR, Egan RW, Fernandez X, Jones H, Kreutner W, Kung T, Payvandi F, Sullivan L, Zurcher JA, Watnick AS (1992) Interleukin-5 modulates eosinophil accumulation in allergic guinea pig lung. Am Rev Respir Dis 146: 263–266

    PubMed  CAS  Google Scholar 

  4. Kay AB (1991) Asthma and inflammation. J Allergy Clin Immunol 87: 893–910

    Article  PubMed  CAS  Google Scholar 

  5. Marini M, Avoni E, Hollemborg J, Mattoli S (1992) Cytokine mRNA profile and cell activation in bronchoalveolar lavage fluid from nonatopic patients with symptomatic asthma. Chest 102: 661–669

    Article  PubMed  CAS  Google Scholar 

  6. Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley AM, Corrigan C, Durham SR, Kay AB (1992) Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 326: 298–304

    Article  PubMed  CAS  Google Scholar 

  7. Sedgwick JB, Calhoun WJ, Gleich GJ, Kita H, Abrams JS, Schwartz LB, Volovitz B, Ben-Yaakov M, Busse WW (1991) Immediate and late airway response of allergic rhinitis patients to segmental antigen challenge Characterization of eosinophil and mast cell mediators. Am Rev Respir Dis 144: 1274–1281

    PubMed  CAS  Google Scholar 

  8. Garlisi CG, Falcone A, Billah MM, Egan RW, Umland SP (1996) T cells are the predominant source of interleukin-5 but not interleukin-4 mRNA expression in the lungs of antigen-challenged allergic mice. Am J Respir Cell Mol Biol 15: 420–428

    PubMed  CAS  Google Scholar 

  9. Garlisi CG, Falcone A, Kung TT, Stelts D, Pennline KJ, Beavis AJ, Smith SR, Egan RW, Umland SP (1995) T cells are necessary for Th2 cytokine production and eosinophil accumulation in airways of antigen-challenged allergic mice. Clin Immunol Immuno-pathol 75: 75–83

    Article  CAS  Google Scholar 

  10. Bradding P, Feather IH, Wilson S, Bardin PG, Heusser CH, Holgate ST, Howarth PH (1993) Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation. J Immunol 151: 3853–3865

    PubMed  CAS  Google Scholar 

  11. Dubucquoi S, Desreumaux P, Janin A, Klein O, Goldman M, Tavernier J, Capron A, Capron M (1994) Interleukin 5 synthesis by eosinophils: association with granules and immunoglobulin-dependent secretion. J Exp Med 179: 703–708

    Article  PubMed  CAS  Google Scholar 

  12. Nonaka M, Nonaka R, Woolley K, Adelroth E, Miura K, Okhawara Y, Glibetic M, Nakano K, O’Byrne P, Dolovich J et al (1995) Distinct immunohistochemical localization of IL-4 in human inflamed airway tissues IL-4 is localized to eosinophils in vivo and is released by peripheral blood eosinophils. J Immunol 155: 3234–3244

    PubMed  CAS  Google Scholar 

  13. Brinkmann V, Kristofic C (1995) Regulation by corticosteroids of Thl and Th2 cytokine production in human CD4+ effector T cells generated from CD45RO? and CD45RO+ subsets. J Immunol 155: 3322–3328

    PubMed  CAS  Google Scholar 

  14. Umland SP, Nahrebne DK, Razac S, Beavis A, Pennline KJ, Egan RW, Billah MM (1997) The inhibitory effects of topically active glucocorticoids on IL-4, IL-5 and interferon-gamma production by cultured primary CD4+ T cells. J Allergy Clin Immunol 100: 511–519

    Article  PubMed  CAS  Google Scholar 

  15. Krouwels FH, van der Heijden JF, Lutter R, van Neerven RJ, Jansen HM, Out TA (1996) Glucocorticosteroids affect functions of airway-and blood-derived human T-cell clones, favoring the Thl profile through two mechanisms. Am J Respir Cell Mol Biol 14: 388–397

    PubMed  CAS  Google Scholar 

  16. Robinson D, Hamid Q, Ying S, Bentley A, Assoufi B, Durham S, Kay AB (1993) Pred-nisolone treatment in asthma is associated with modulation of bronchoalveolar lavage cell interleukin-4, interleukin-5, and interferon-gamma cytokine gene expression. Am Rev Respir Dis 148: 401–406

    PubMed  CAS  Google Scholar 

  17. Kinashi T, Harada N, Severinson E, Tanabe T, Sideras P, Konishi M, Azuma C, Tomi-naga A, Bergstedt-Lindqvist S, Takahashi M et al (1986) Cloning of complementary DNA encoding T-cell replacing factor and identity with B-cell growth factor II. Nature 324: 70–73

    Article  PubMed  CAS  Google Scholar 

  18. Azuma C, Tanabe T, Konishi M, Kinashi T, Noma T, Matsuda F, Yaoita Y, Takatsu K, Hammarstrom L, Smith CI et al (1986) Cloning of cDNA for human T-cell replacing factor (interleukin-5) and comparison with the murine homologue. Nucleic Acids Res 14:9149–9158

    Article  PubMed  CAS  Google Scholar 

  19. Naora H, Altin J G, Young IG (1994) TCR-dependent and-independent signaling mechanisms differentially regulate lymphokine gene expression in the murine T helper clone D10G41. J Immunol 152, 5691–5702

    PubMed  CAS  Google Scholar 

  20. Umland SP, Razac S, Shah H, Nahrebne DK, Egan RW, Billah MM (1998) Interleukin-5 mRNA stability in human T cells is regulated differently than interleukin-2, inter-leukin-3, interleukin-4, granulocyte/macrophage colony-stimulating factor, and interfer-on-γ. Am J Respir Cell Mol Biol 18: 631–642

    PubMed  CAS  Google Scholar 

  21. Staynov DZ, Lee TH (1992) Expression of interleukin-5 and granulocyte-macrophage colony-stimulating factor in human peripheral blood mononuclear cells after activation with phorbal myristate acetate. Immunology 75: 196–201

    PubMed  CAS  Google Scholar 

  22. Northrop JP, Ho SN, Chen L, Thomas DJ, Timmerman LA, Nolan GP, Admon A, Crabtree GR (1994) NF-AT components define a family of transcription factors targeted in T-cell activation [see comments]. Nature 369: 497–502

    Article  PubMed  CAS  Google Scholar 

  23. Schandene L, Alonso-Vega C, Willems F, Gerard C, Delvaux A, Velu T, Devos R, de Boer M, Goldman M (1994) B7/CD28-dependent IL-5 production by human resting T cells is inhibited by IL-10. J Immunol 152: 4368–4374

    PubMed  CAS  Google Scholar 

  24. Hatfield SM, Roehm NW (1992) Cyclosporine and FK506 inhibition of murine mast cell cytokine production. J Pharmacol Exp Ther 260: 680–688

    PubMed  CAS  Google Scholar 

  25. Alexander AG, Barnes NC, Kay AB (1992) Trial of cyclosporin in corticosteroid-depen-dent chronic severe asthma [see comments]. Lancet 339: 324–328

    Article  PubMed  CAS  Google Scholar 

  26. Takahashi T, Yamaguchi N, Mita S, Yamaguchi Y, Suda T, Tominaga A, Kikuchi Y, Miura Y, Takatsu K (1990) Structural comparison of murine T-cell (B151K12)-derived T-cell-replacing factor (IL-5) with rIL-5: dimer formation is essential for the expression of biological activity. Mol Immunol 27: 911–920

    Article  PubMed  CAS  Google Scholar 

  27. Glaum MC, Jaffe JS, Gillespie DH, Raible DG, Post TJ, Wang Y, Dimitry E, Schulman ES (1995) IgE-dependent expression of interleukin-5 mRNA and protein in human lung: modulation by dexamethasone. Clin Immunol Immunopathol 75: 171–178

    Article  PubMed  CAS  Google Scholar 

  28. Murata Y, Takaki S, Migita M, Kikuchi Y, Tominaga A, Takatsu K (1992) Molecular cloning and expression of the human Interleukin 5 receptor. J Exp Med 175: 341–351

    Article  PubMed  CAS  Google Scholar 

  29. Miyajima A, Kitamura T, Harada N, Yokota T, Arai K (1992) Cytokine receptors and signal transduction. Annu Rev Immunol 10: 295–331

    Article  PubMed  CAS  Google Scholar 

  30. Fujisawa T, Terada A, Atsuta J, Iguchi K, Kamiya H, Sakurai M (1997) IL-5 as a strong secretagogue for human eosinophils. Int Arch Allergy Immunol 114: 81–83

    Article  PubMed  CAS  Google Scholar 

  31. Oskeritzian C, Le Mao J, David B (1998) Recombinant murine (rm) Interleukin (IL-)-5 enhances the eosinophil peroxidase content in cells cultured in vitro compared with rmIL-3 and granulocyte-macrophage colony-stimulating factor. Exp Hematol 26: 472–477

    PubMed  CAS  Google Scholar 

  32. Hokibara S, Takamoto M, Tominaga A, Takatsu K, Sugane K (1997) Marked eosinophilia in interleukin-5 transgenic mice fails to prevent Trichinella spiralis infection. J Parasitol 83: 1186–1189

    Article  PubMed  CAS  Google Scholar 

  33. Matthaei KI, Foster P, Young IG (1997) The role of interleukin-5 (IL-5) in vivo: studies with IL-5 deficient mice. Mem Inst Oswaldo Cruz 92: 63–68

    Article  PubMed  CAS  Google Scholar 

  34. Hogan SP, Koskinen A, Matthaei KI, Young IG, Foster PS (1998) Interleukin-5-producing CD4+ T cells play a pivotal role in aeroallergen-induced eosinophilia, bronchial hyperreactivity and lung damage in mice. Am J Respir Crit Care Med 157: 210–218

    PubMed  CAS  Google Scholar 

  35. Kaminuma O, Mori A, Suko M, Kikkawa H, Naito K, Okudaira H (1997) Development of lung eosinophilic inflammation by the infusion of IL-5-producing T cell clones. Int Arch Allergy Immunol 114: 10–13

    Article  PubMed  CAS  Google Scholar 

  36. Asakura K, Saito H, Watanabe M, Ogasawara H, Matsui T, Kataura A (1998) Effects of anti-IL-5 monoclonal antibody on the murine model of nasal allergy. Int Arch Allergy Immunol 116: 49–52

    Article  PubMed  CAS  Google Scholar 

  37. Garlisi CG, Kung TT, Wang P, Minnicozzi M, Umland SP, Chapman RW, Stelts D, Crawley Y, Falcone A, Myers JG, Jones H, Billah M, Kreutner W, Egan RW (1999) Effects of chronic anti-interleukin-5 monoclonal antibody treatment in a murine model of pulmonary inflammation. Am J Respir Cell Mol Biol 20: 248–255

    PubMed  CAS  Google Scholar 

  38. Tanaka H, Nagai H, Maeda Y (1998) Effect of anti-IL-4 and anti-Il-5 antibodies on allergic airway hyperresponsiveness in mice. Life Sci 62: 169–174

    Article  Google Scholar 

  39. Kurup VP, Murali PS, Guo J, Choi H, Banerjee B, Fink JN, Coffman RL (1997) Anti-Interleukin (IL-)-4 and-IL-5 antibodies downregulate IgE and eosinophilia in mice exposed to Aspergillus antigens. Allergy 52: 1215–1221

    Article  PubMed  CAS  Google Scholar 

  40. Shi HZ, Xiao CQ, Zhong D, Qin SM, Liu Y, Liang GR, Xu H, Chen YQ, Long XM, Xie ZF (1998) Effect of inhaled interleukin-5 on airway hyperreactivity and eosinophilia in asthmatics. Am J Respir Crit Care Med 157: 204–209

    PubMed  CAS  Google Scholar 

  41. Shoji S, Kanazawa H, Hirata K, Kurihara N, Yoshikawa J (1998) Clinical implication of protein levels of IL-5 in induced sputum in asthmatic patients. J Asthma 35: 243–249

    Article  PubMed  CAS  Google Scholar 

  42. Tang C, Rolland JM, Ward C, Quan B, Walters EH (1997) Allergen-induced airway reactions in atopic asthmatics correlate with allergen-specific IL-5 response by BAL cells. Respirology 2: 45–55

    Article  PubMed  CAS  Google Scholar 

  43. Sulakvelidze I, Inman MD, Rerecich T, O’Byrne PM (1998) Increases in airway eosinophils and interleukin-5 with minimal bronchoconstriction during repeated low-dose allergen challenge in atopic asthmatics. Eur Respir J 4: 821–827

    Article  Google Scholar 

  44. Ohashi Y, Nakai Y, Tanaka A, Kakinoki Y, Masamoto T, Kato A, Washio Y, Yamada K, Hayashi M, Ohmoto Y (1998) Allergen-induced synthesis of interleukin-5, but not of IgE, is a key mechanism linked to symptomatic episodes of seasonal allergic rhinitis in sensitized individuals. Scand J Immunol 47: 596–602

    Article  PubMed  CAS  Google Scholar 

  45. Oda N, Yamashita N, Minoguchi K, Takeno M, Kaneko S, Sakane T, Adachi M (1998) Long-term analysis of allergen-specific T cell clones from patients with asthma treated with allergen rush immunotherapy. Cell Immunol 190: 43–50

    Article  PubMed  CAS  Google Scholar 

  46. Hayashi M, Ohashi Y, Tanaka A, Kakinoki Y, Nakai Y (1998) Suppression of season increase in serum interleukin-5 is linked to the clinical efficacy of immunotherapy for seasonal allergic rhinitis. Acta Otolaryngol Suppl (Stockh) 538: 133–142

    PubMed  CAS  Google Scholar 

  47. Rolfe FG, Hughes JM, Armour CL, Sewell WA (1992) Inhibition of interleukin-5 gene expression by dexamethasone. Immunology 77: 494–499

    PubMed  CAS  Google Scholar 

  48. Weller PF (1991) The immunobiology of eosinophils. N Engl J Med 324: 1110–1118

    Article  PubMed  CAS  Google Scholar 

  49. Tavernier J, Devos R, Cornelis S, Tuypens T, Van der Heyden J, Fiers W, Plaetinck G (1991) A human high affinity interleukin-5 receptor (IL-5R) is composed of an IL-5-spe-cific alpha chain and a beta chain shared with the receptor for GM-CSF. Cell 66: 1175–1184

    Article  PubMed  CAS  Google Scholar 

  50. Yamaguchi S, Nagai H, Tanaka H, Tsujimoto M, Tsuruoka N (1994) Time course study for antigen-induced airway hyperreactivity and the effect of soluble IL-5 receptor. Life Sci 54: L471–L475

    Article  Google Scholar 

  51. Mauser PJ, Pitman AM, Fernandez X, Foran SK, Adams GK 3rd, Kreutner W, Egan R W, Chapman RW (1995) Effects of an antibody to interleukin-5 in a monkey model of asthma. Am J Respir Crit Care Med 152: 467–472

    PubMed  CAS  Google Scholar 

  52. Elliott MJ, Maini RN, Feldmann M, Kalden JR, Antoni C, Smolen JS, Leeb B, Breedveld FC, Macfarlane JD, Bijl H et al (1994) Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 344: 1105–1110

    Article  PubMed  CAS  Google Scholar 

  53. Stack WA, Mann SD, Roy AJ, Heath P, Sopwith M, Freeman J, Holmes G, Long R, Forbes A, Kamm MA (1997) Randomised controlled trial of CDP571 antibody to tumour necrosis factor-alpha in Crohn’s disease [see comments]. Lancet 349, 521–524

    Article  PubMed  CAS  Google Scholar 

  54. Wee S, Pascual M, Eason JD, Schoenfeld DA, Phelan J, Boskovic S, Blosch C, Mohler K, Cosimi AB (1997) Biological effects and fate of a soluble, dimeric, 80-kDa tumor necrosis factor receptor in renal transplant recipients who receive OKT3 therapy. Transplantation 63: 570–577

    Article  PubMed  CAS  Google Scholar 

  55. Kruse N, Tony HP, Sebald W (1992) Conversion of human interleukin-4 into a high affinity antagonist by a single amino acid replacement. Embo J 11: 3237–3244

    PubMed  CAS  Google Scholar 

  56. Lukacs NW, Standiford TJ, Chensue SW, Kunkel RG, Strieter RM, Kunkel SL (1996) C-C chemokine-induced eosinophil chemotaxis during allergic airway inflammation. J Leukoc Biol 60: 573–578

    PubMed  CAS  Google Scholar 

  57. Bloemen PG, Henricks PA, Nijkamp FP (1997) Cell adhesion molecules and asthma. Clin Exp Allergy 27: 128–141

    Article  PubMed  CAS  Google Scholar 

  58. Zangrilli JG, Shaver JR, Cirelli RA, Cho SK, Garlisi CG, Falcone A, Cuss FM, Fish JE, Peters SP (1995) sVCAM-1 levels after segmental antigen challenge correlate with eosinophil influx, IL-4 and IL-5 production, and the late phase response. Am J Respir Crit Care Med 151: 1346–1353

    PubMed  CAS  Google Scholar 

  59. Kung TT, Jones H, Adams GK 3rd, Umland SP, Kreutner W, Egan RW, Chapman RW, Watnick AS (1994) Characterization of a murine model of allergic pulmonary inflammation. Int Arch Allergy Immunol 105: 83–90

    Article  PubMed  CAS  Google Scholar 

  60. Coffman RL, Seymour BW, Hudak S, Jackson J, Rennick D (1989) Antibody to inter-leukin-5 inhibits helminth-induced eosinophilia in mice. Science 245: 308–310

    Article  PubMed  CAS  Google Scholar 

  61. Sher A, Coffman RL, Hieny S, Cheever AW (1990) Ablation of eosinophil and IgE responses with anti-IL-5 or anti-IL-4 antibodies fails to affect immunity against Schisto-soma mansoni in the mouse. J Immunol 145: 3911–3916

    PubMed  CAS  Google Scholar 

  62. Korenaga M, Hitoshi Y, Yamaguchi N, Sato Y, Takatsu K, Tada I (1991) The role of interleukin-5 in protective immunity to Strongyloides venezuelensis infection in mice. Immunology 72: 502–507

    PubMed  CAS  Google Scholar 

  63. Sher A, Coffman RL, Hieny S, Scott P, Cheever AW (1990) Interleukin 5 is required for the blood and tissue eosinophilia but not granuloma formation induced by infection with Schistosoma mansoni. Proc Natl Acad Sci USA 87: 61–65

    Article  PubMed  CAS  Google Scholar 

  64. Masuda Y, Mita S, Sakamoto K, Ishiko T, Ogawa M (1995) Suppression of in vivo tumor growth by the transfection of the interleukin-5 gene into colon tumor cells. Cancer Immunol Immunother 41: 325–330

    Article  PubMed  CAS  Google Scholar 

  65. Tepper RI, Coffman L, Leder P (1992) An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science 257: 548–551

    Article  PubMed  CAS  Google Scholar 

  66. Rivoltini L, Viggiano V, Spinazze S, Santoro A, Colombo MP, Takatsu K, Parmiani G (1993) In vitro anti-tumor activity of eosinophils from cancer patients treated with subcutaneous administration of Interleukin 2. Role of Interleukin 5 [published erratum appears in Int J Cancer 1993 Jul 9; 54(5):887]. Int J Cancer 54: 8-15

    Article  Google Scholar 

  67. Balint G, Gergely P Jr (1996) Clinical immunotoxicity of antirheumatic drugs. Inflamm Res 45(2): S91–S95

    PubMed  CAS  Google Scholar 

  68. Bouwes Bavinck JN, Hardie DR, Green A, Cutmore S, MacNaught A, O’Sullivan B, Siskind V, Van Der Woude FJ, Hardie IR (1996) The risk of skin cancer in renal transplant recipients in Queensland, Australia. A follow-up study. Transplantation 61: 715–721

    Article  PubMed  CAS  Google Scholar 

  69. Walz MK, Albrecht KH, Niebel W, Eigler FW (1992) De novo malignant tumors during drug immunosuppression. The findings following 1245 cadaveric kidney transplants in 1080 patients. Dtsch Med Wochenschr 117: 927–934

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Cuss, F.M. (2000). Interleukin 5. In: Narula, S.K., Coffman, R. (eds) New Cytokines as Potential Drugs. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8456-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8456-3_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9575-0

  • Online ISBN: 978-3-0348-8456-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics