Skip to main content

New discoveries in the development of antipsychotics with novel mechanisms of action: beyond the atypical antipsychotics with serotonin dopamine antagonism

  • Chapter
Atypical Antipsychotics

Part of the book series: Milestones in Drug Therapy MDT ((MDT))

Abstract

Antipsychotic innovation can be divided into three eras. The first era began with the serendipitous discovery of the classical antipsychotic neuroleptics, later found to mediate their therapeutic actions by blocking D2 dopamine receptors, particularly in the mesolimbic dopamine pathway [1]. From the late 1950s through the 1980s, a large number of effective compounds sharing this mechanism of action were thus discovered and marketed. The use of such classical antipsychotic compounds has now given way to the era of “atypical antipsychotics” which began in the late 1980s when the atypical properties of clozapine were observed, and attributed at least in part to the simultaneous blockade of serotonin 2A receptors as well as D2 dopamine receptors [13]. We are currently nearing the end of this era now that several SDAs (serotonin dopamine antagonists) have been discovered and marketed, with a few more in the late stages of clinical development. These compounds have been discussed and emphasised in many of the preceding chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stahl SM (1996)Essential psychopharmacology.Cambridge University Press, London

    Google Scholar 

  2. Stahl SMPsychopharmacology of antipsychotics.Martin Dunitz Ltd., London;in press

    Google Scholar 

  3. Amt J, Skarsfeldt T (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence.Neuropsychopharmacol18: 63–101

    Article  Google Scholar 

  4. Pharmaceutical Companies Analysis. (1998) MDIS Publications Ltd. Chichester

    Google Scholar 

  5. Szewczak MR, Corbett R, Rush DK, Wilmot CA, Conway PG, Strupczewski JT, Cornfeldt M (1996) The pharmacological profile of iloperidone, a novel atypical antipsychotic agent.JPharmacol Exp Ther274: 1404–1413

    Google Scholar 

  6. Tandon R, Harrigan E, Zorn S (1997) Ziprasidone: a novel antipsychotic with unique pharmacology and therapeutic potential.JSerotonin Res4: 159–177

    Google Scholar 

  7. Rowley HL, Kilpatrick, IC, Needham PL, Heal DJ (1998) Elevation of extracellular cortical noradrenaline may contribute to the antidepressant activity of zotepine: anin vivomicro-dialysis study in freely moving rats.Neuropharmacol37: 937–944

    Article  CAS  Google Scholar 

  8. Assie MB, Cosi C, Koek W (1997) 5-HTIAreceptor agonist properties of the antipsychotic, nemonapride: comparison with bromerguride and clozapine.Europ J Pharmacol334: 141–147

    Article  CAS  Google Scholar 

  9. Sorenson SM, Kehne JH, Fadayel GM, Humphreys TM, Ketteler HJ, Sullivan CK, Taylor VL, Schmidt CJ (1993) Characterization of the 5-HT2receptor antagonist MDL 100907 as a putative atypical antipsychotic: behavioral, electrophysiological and neurochemical studies.JPharmacol Exp Ther266: 684–691

    Google Scholar 

  10. Grunder G, Yokoi F, Offord SJ, Ravert HT, Dannals RF, Salzmann JK, Szymanski S, Wilson PD, Howard DR, Wong DF (1997) Time course of 5-HT2Areceptor occupancy in the human brain after a single oral dose of the putative antipsychotic drug MDL 100,907 measured by positron emission tomography.Neuropsychopharmacol 17:175–185

    Article  CAS  Google Scholar 

  11. Stahl SM (1998) Neuropharmacology of obesity: My receptors made me eat it.J Clin Psychiat59: 447–448

    Article  CAS  Google Scholar 

  12. Martin P (1998)5-HT 2 receptor antagonism and antipsychotic drugs; a behavioral and neurochemical study in a rodent hypoglutamatergia model .Goteborg University, Sweden

    Google Scholar 

  13. Satoh K, Someya T, Shibasaki M (1997) Nemonapride for the treatment of schizophrenia.Am JPsychiat154: 292

    CAS  Google Scholar 

  14. Kramer MS, Last B, Getson A, Reines SA (1997) The effects of a selective D4 dopamine receptor antagonist (L-745–870) in acutely psychotic inpatients with schizophrenia.Arch Gen Psychiat54: 567–572

    Article  PubMed  CAS  Google Scholar 

  15. Sramek JJ, Elton MA, Posvar EL, Feng MR, Jhee SS, Hourani J, Sedman AJ, Cutler NR (1998) Initial safety, tolerability, pharmacodynamics and pharmacokinetics of C1–1007 in Patients With Schizophrenia.Psychopharmacol Bull34: 93–99

    PubMed  CAS  Google Scholar 

  16. Ekesbo A, Andren POE, Gunne LM, Tedroff J (1997) (—)-OSU 6162 inhibits levodopainduced dyskinesias in a monkey model of Parkinson’s disease.Clin Sci Neuropathol neurorep8: 2567–2570

    CAS  Google Scholar 

  17. Frieboes RM, Murck H, Wiedemann K, Holsboer F, Steiger A (1997) Open clinical trial of the sigma ligand panamesine inpatients with schizophrenia.Psychopharmacology132: 82–88

    Article  PubMed  CAS  Google Scholar 

  18. Akunne HC, Whetzel SZ, Wiley JN, Corbin AE, Ninteman FW, Tecle H, Pei Y, Pugsley TA, Heffner TG (1997) The pharmacology of the novel and selective sigma ligand, PD 144418.Neuropharmacology36: 51–62

    Article  PubMed  CAS  Google Scholar 

  19. Tran TT, de Costa BR, Matsumoto RR (1998) Microinjection of sigma ligands into cranial nerve nuclei produces vacuous chewing in rats.Psychopharmacology137: 191–200

    Article  PubMed  CAS  Google Scholar 

  20. Stahl SM (1998) Getting stoned without inhaling: anandamide is the brain’s natural marijuana.J Clin Psychiat59 (11): 566–567

    Article  CAS  Google Scholar 

  21. Axelrod J, Felder CC (1998) Cannabinoid receptors and their endogenous agonist nand-amide.Neurochem Res23: 575–581

    Article  PubMed  CAS  Google Scholar 

  22. Carriero D, Aberman J, Linn SY, Hill A, Makriyannis A, Salamone JD (1998) A detailed characterization of the effects of four cannabinoid agonists on operant lever pressing.Psychopharmacology137: 147–156

    Article  PubMed  CAS  Google Scholar 

  23. Emrich HM, Leweke FM, Schneider U (1997) Towards a cannabinoid hypothesis of schizophrenia: cognitive impairments due to dysregulation of the endogenous cannabinoid system.Pharmacol Biochem Behav56 (4): 803–807

    Article  PubMed  CAS  Google Scholar 

  24. Burrows GD, Maguire KP, Norman TR (1998) Antidepressant efficacy and tolerability of the selective norepinephrine reuptake inhibitor reboxetine: a review.J Clin Psychiat59: (Suppl)

    Google Scholar 

  25. Gudasheva TA, Voronina TA, Ostrovskaya RU, Zaitseva NI, Bondarenko NA, Briling VK, Asmakova LS, Rozantsev GG, Seredenin SB (1998) Design of N-acylprolyltyrosine “tripeptoid” analogues of neurotensin as potential atypical agents.JMed Chem41: 284–290

    Article  CAS  Google Scholar 

  26. Sarhan S, Hitchcock JM, Grauffel CA, Wettstein JG (1997) Comparative antipsychotic profiles of neurotensin and a related systemically active peptide agonist.Peptides18: 1223–1227

    Article  PubMed  CAS  Google Scholar 

  27. Betancur C, Cabrera R, de Kloet ER, Pelaprat D, Rostene W (1998) Role of endogenous neurotensin in the behavioral and neuroendocrine effects of cocaine.Neuropsychopharmacol19: 321–332

    Google Scholar 

  28. Gracey DJ, Bell R, King DJ, Trimble KM, McDermott BJ (1998) Enhancement of latent inhibition in the rat by the CCK antagonist proglumide.Pharmacol Biochem Behav59: 1053–1059

    Article  PubMed  CAS  Google Scholar 

  29. Mauri MC, Rudelli R, Vanni S, Panza G, Sicaro A, Audisio D, Sacerdote P, Panerai AE (1998) Cholecystokinin, B-endorphin and vasoactive intestinal peptide in peripheral blood mononuclear cells of drug-naive schizophrenic patients treated with haloperidol compared to healthy controls.Psychiat Res78: 45–50

    Article  CAS  Google Scholar 

  30. Whiteford HA, Stedman TJ, Welham JW, Csernansky, JG, Pond SM (1992) Placebo-controlled, double-blind study of the effects of proglumide in the treatment of schizophrenia.J Clinical Psychopharmacol12: 337–340

    CAS  Google Scholar 

  31. Bradwejn J, Koszycki D, Couetoux du Teretre A, Van Megen HJGM, Westenberg HGM, Den Boer JA, Karkanias C, Haigh J (1994) The Panicogenic effects of cholecystokinin tetrapeptide are antagonized by L-365,260, a central cholecystokinin receptor antagonist in patients with panic disorder.Arch Gen Psychiat 51:486–493

    Article  PubMed  CAS  Google Scholar 

  32. Muthal AV, Mandhane SN, Chopde CT (1997) Central administration of FMRFamide produces antipsychotic-like effects in rodents.Neuropeptides31 (4): 319–322

    Article  PubMed  CAS  Google Scholar 

  33. Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, Reines SA, Liu G, Snavely D, Wyatt-Knowles E, et al. (1998) Distinct mechanism for antidepressant activity by blockade of central substance p receptors.Science281: 1640–1645

    Article  PubMed  CAS  Google Scholar 

  34. Longmore J, Hill RG, Hargreaves RJ (1997) Neurokinin-receptor antagonists: pharmacological tools and therapeutic drugs.Can JPhysiol Pharmacol75: 612–621

    Article  CAS  Google Scholar 

  35. Stahl SM (1998) Cholinesterase inhibitors for Alzheimer’s disease.Hosp Pract33 (11): 131–136

    Article  CAS  Google Scholar 

  36. Adler LE, Olincy A, Waldo M, Harris JG, Griffith J Stevens K, Flach K, Nagamoto H, Bickford P, Leonard S, Freedman R (1998) Schizophrenia, sensory gating, and nicotinic receptors.Schizophr Bull24: 189–202

    Article  PubMed  CAS  Google Scholar 

  37. Jope RS, Song L, Grimes CA, Pacheco MA, Dilley GE, Li X, Meltzer HY, Overholser JC, Stockmeier CA (1998) Selective increases in phosphoinositide signaling activity and G protein levels in post mortem brain from subjects with schizophrenia or alcohol dependence.JNeurochem70: 763–771

    Article  CAS  Google Scholar 

  38. Hudson CJ, Lin A, Cogan S, Cashman F, Warsh JJ (1997) The niacin challenge test: clinical manifestation of altered transmembrane signal transduction in schizophrenia?Soc Biol Psychiat41: 507–513

    Article  CAS  Google Scholar 

  39. Sorbi S, Nacmias B, Tedde A, Latorraca S, Forleo P, Guarnieri BM, Petruzzi C, Daneluzzo E, Ortenzi L, Piacentini S, Amaducci L (1998) No implication of apolipoprotein E polymorphism in Italian schizophrenic patients.Neurosci Lett244: 118–120

    Article  PubMed  CAS  Google Scholar 

  40. Arnold SE, Joo E, Martinoli MG, Roy N, Trojanowski JQ, Gur RE, Cannon T, Price RA (1997) Apolipoprotein E genotype in schizophrenia: frequency, age of onset, and neuropathologic features.Clin Neurosci Neuropathol Neurorep8: 1523–1526

    CAS  Google Scholar 

  41. Turner EE, Fedtsova N, Jeste DV (1997) Cellular and molecular neuropathology of schizophrenia: new directions from developmental neurobiology.Schizophr Res27: 169–180

    Article  PubMed  CAS  Google Scholar 

  42. Conceits DM, Ragland JD, Gur RC, Gur RE (1997) Neuropsychological evidence supporting a neurodevelopmental model of schizophrenia: a longitudinal study.Schizophr Res24: 289–298

    Article  Google Scholar 

  43. Stahl SM (1998) Brain tonics for brain sprouts: how neurotrophic factors fertilize neurons.JClin Psychiat59: 149–150

    Article  CAS  Google Scholar 

  44. Stahl SM (1998) Recognition molecules are trailblazers for axon pathways.J Clin Psychiat59: 215–216

    Article  CAS  Google Scholar 

  45. Stahl SM (1998) When neurotrophic factors get on your nerves: therapy for neurodegenerative disorders.J Clin Psychiat59: 277–278

    Article  CAS  Google Scholar 

  46. Thome J, Foley P, Riederer P (1998) Neurotrophic factors and the maldevelopmental hypothesis of schizophrenic psychoses.JNeural Transm105: 85–100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Stahl, S.M., Shayegan, D.K. (2000). New discoveries in the development of antipsychotics with novel mechanisms of action: beyond the atypical antipsychotics with serotonin dopamine antagonism. In: Ellenbroek, B.A., Cools, A.R. (eds) Atypical Antipsychotics. Milestones in Drug Therapy MDT. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8448-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8448-8_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9571-2

  • Online ISBN: 978-3-0348-8448-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics