Skip to main content

Regulation of the CA1, CA2 and CA3 genes

  • Chapter
The Carbonic Anhydrases

Part of the book series: EXS 90 ((EXS,volume 90))

  • 725 Accesses

Abstract

In this chapter we will describe what is known about the regulation of the carbonic anhydrase (CA) genes closely clustered on human chromosome 8 and mouse chromosome 3, CA1, CA2 and CA3.(Fig. 1). These genes encode the cytosolic proteins CAI, CAII and CAIII which show considerable homology in their primary structures but differences in the detail of their catalytic properties. For example CAII has a CO2 turnover number at least 100 fold greater than that of CAIII, while CAIII has been shown to possess a unique phosphatase activity and can efficiently dephosphorylate phosphotyrosine residues (Cabiscol and Levine, 1996). These three genes are also distinguished by their temporal and spatial patterns of expression and this is likely to have arisen by sequence divergence in their regulatory elements after gene duplication. The promoters of the CA2 and CA3 genes are both G + C rich and show some localized sequence homologies which signal a common ancestry for their promoters, however the CAI promoter is not G + C rich and shows no homology to those of CA2 and A3. The CA1 gene is inverted in its genomic orientation relative to the other two genes. An inversion event sometime in the genomic history of this gene cluster could have led to the aquisition of novel 5’ flanking sequence and discrete regulatory control.

Map of the carbonic anhydrase gene cluster (CA1, CA2, and CA3) on human chromosome 8 (8q22). Exons are indicated as blocks; transcription start sites determined by two promoters in CA1 and CA2, and one in CA3 are shown as arrows. The major sites of expression for each gene promoter are indicated below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amrolia PJ, Cunningham JM, Ney P, Neinhuis AW, Jane SM (1995) Identification of two novel regulatory elements within the 5’ untranslated region of the human A gamma-globin gene. J Biol Chem 270: 12 892–12 898

    Article  PubMed  CAS  Google Scholar 

  • Blackwell TK, Weintraub H (1990) Differences and similarities in the DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250: 1104–1110

    Article  PubMed  CAS  Google Scholar 

  • Brady HJM, Sowden JC, Edwards M, Lowe N, Butterworth PHW (1989) Multiple GF-1 binding sites flank the erythroid specific transcription unit of the human carbonic anhydrase 1 gene. FEBS Letts 257: 451–456

    Article  CAS  Google Scholar 

  • Brady HJM, Edwards M, Linch DC, Knott L, Barlow JH, Butterworth PHW (1990) Expression of the human carbonic anhydrase I gene is activated late in fetal erythroid development and regulated by stage-specific trans-activating factors. Brit J Haematol 76: 135–142

    Article  CAS  Google Scholar 

  • Brady HJM, Lowe N, Sowden JC, Edwards M, Butterworth PHW (1991) The human carbonic anhydrase I gene has two promoters with different tissue specificities. Biochem J 277: 903–905

    PubMed  CAS  Google Scholar 

  • Buckingham M (1994) Which myogenic factors make muscle? Curr Biol 4: 61–63

    Article  PubMed  CAS  Google Scholar 

  • Buono RJ, Linser PJ, Cuthbertson RA, Piatigorsky J (1992) Molecular analyses of carbonic anhydrase-II expression and regulation in the developing chicken lens. Dev Dynamics 194: 33–42

    Article  CAS  Google Scholar 

  • Boyer SH, Siegal S, Noyes AN (1983) Developmental changes in human erythrocyte carbonic anhydrase levels: co-ordinate expression with adult haemoglobin. Dev Biol 97: 250–253

    Article  PubMed  CAS  Google Scholar 

  • Cabiscol E, Levine RL (1996) The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation. Proc Natl Acad Sci USA 93: 4170–4174

    Article  PubMed  CAS  Google Scholar 

  • Carter ND, Wistrand P, Isenberg H, Askmark H, Jeffrey S, Hopkins D, Edwards Y (1988) Induction of carbonic anhydrase III mRNA and protein by denervation of rat muscle. Biochem J 256: 147–152

    PubMed  CAS  Google Scholar 

  • Chantret I, Barbat A, Dussaulx E, Brattain MG, Zweibaum A (1988) Epithelial polarity, villin expression, and enterocyte differentiation of cultures human colon carcinoma cells: A survey of twenty cell lines. Cancer Res 48: 1936–1942

    PubMed  CAS  Google Scholar 

  • Chantret I, Lacasa M, Chevalier G, Ruf J, Islam I, Mantei N, Edwards Y, Swallow D, Rousset M (1992) Sequence of the complete cDNA and the 5’ structure of the human sucraseisomaltase gene. Biochemical Journal 285: 915–923

    PubMed  CAS  Google Scholar 

  • Chantret I, Rodolosse A, Barbat A, Dussaulx E, Brot-Laroche E, Zweibaum A, Rousset M (1994) Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for glucose-dependent negative regulation. J Cell Science 107: 213–225

    PubMed  CAS  Google Scholar 

  • Charney AN, Wagner JD, Birnbaum GJ, Johnstone JN (1986) Functional role of carbonic anhydrase in intestinal electrolyte transport. Am J Physiol 251: G682–687

    PubMed  CAS  Google Scholar 

  • David JP, Rascle A, Samarut J, Baron R (1994) Identification of the region involved in the regulation of the chicken carbonic anhydrase II promoter by phorbol ester and 1,25 dihydroxylvitamin D3. Calcified Tiss Int 54: 356

    Google Scholar 

  • Disela C, Glineur C, Bugge T, Sap J, Stengl G, Dodgson J, Stennenberg H, Beug H, Zenke M (1991) v-erb A overexpression is required to extinguish c-erbA function in erythroid cell differentiation and regulation of the erbA target gene CAII. Genes & Dev 5: 2033–2047

    Article  CAS  Google Scholar 

  • Drummond F, Sowden J, Morrison K, Edwards YH (1996) The caudal-type homeobox protein Cdx-2 binds to the colon promoter of the carbonic anhydrase 1 gene. Eur J Biochem 236: 670–681

    Article  PubMed  CAS  Google Scholar 

  • Drummond F, Sowden J, Morrison K, Edwards YH (1998) Colon carbonic anhydrase 1: trans-activation of gene expression by the homeodomain protein Cdx 2. FEBS Letts 423: 218–222

    Article  CAS  Google Scholar 

  • Edwards YH (1991) Structure and expression of the carbonic anhydrase in gene. In: Carbonic Anhydrases: Cellular Physiology & Mol Genet Edition. 215–224

    Google Scholar 

  • Edwards YH, Tweedie S, Lowen, Lyons G (1992) Carbonic anhydrase 3 (CA3) a mesodermal marker. In: A El Haj (ed): Molecular Biology of Muscle. 273–283

    Google Scholar 

  • Edwards YH, Putt W, Leokape KM, Stott D, Fox M, Hopkinson DA, Sowden J (1996) The human homologue (Hu-T) of the mouse T (Brachyury) gene; gene structure, cDNA sequence and assignment to chromosome 6q27. Genome Res 6: 226–233

    Article  PubMed  CAS  Google Scholar 

  • Erickson RP, Bevilacqua A, Venta PJ, Karolyi J, Tashian RE (1990) Ectopic expression of chloramphenicol acetyltransferase (CAT) in the cerebellum in mice transgenic for a carbonic anhydrase II promoter CAT construct that is without apparent phenotypic effect. Mol Reprod Dev 27: 102–109

    Article  Google Scholar 

  • Erickson RP, Grimes J, Venta PJ, Tashian RE (1995) Expression of carbonic anhydrase II (CA II) promoter-reporter fusion genes in multiple tissues of transgenic mice does not replicate normal patterns of expression indicating complexitiy of CA II regulation in vivo. Biochem Genet 33: 421–437

    Article  PubMed  CAS  Google Scholar 

  • Fleming RE, Parkkila S, Parkkila A-K, Rajaniemi H, Waheed A, Sly WS (1995) Carbonic anhydrase IV expression in rat and human gastrointestinal tract regional, cellular and sub-cellular localisation. J Clin Invest 96: 2907–2913

    Article  PubMed  CAS  Google Scholar 

  • Fraser P, Cummings P, Curtis P (1989) The mouse carbonic anhydrase I gene contains two tissue specific promoters. Mol & Cellular Biol 9: 3308–3313

    CAS  Google Scholar 

  • German MS, Wang J, Chadwick RB, Rutter WJ (1992) Synergistic activation of the insulin gene by a LIM-homeodomain protein and a basic helix-loop-helix protein: building a functional insulin minienhancer complex. Genes & Dev 6: 2165–2176

    Article  CAS  Google Scholar 

  • Grimes A, Paynter J, Walker ID, Bhave M, Mercer JF (1997) Decreased carbonic anhydrase III levels in the mouse mutant ‘toxi milk’ (tx) due to copper accumulation. Biochem J 321: 341–346

    PubMed  CAS  Google Scholar 

  • Harkonen PJ, Vaananen HK (1988) Androgen regulation of carbonic anhydrase II, a major soluble protein in rat lateral prostate tissue. Biol Reprod 38: 377–384

    Article  PubMed  CAS  Google Scholar 

  • Herrmann BG, Kispert A (1994) The T genes in embryogenesis. TIG 10: 280–286

    Article  PubMed  CAS  Google Scholar 

  • James R, Kazenwadel J (1991) Homeobox gene expression in the intestinal epithelium of adult mice. J Biol Chem 266: 3246–3251

    PubMed  CAS  Google Scholar 

  • James R, Erler T, Kazenwadel J (1994) Structure of the murine homeobox gene cdx-2. J Biol Chem 269: 15229–15237

    PubMed  CAS  Google Scholar 

  • Jeffrey S, Edwards Y, Carter N (1980) Distribution of CAIII in fetal and adult human tissue. Biochem Genet 18: 843–849

    Article  Google Scholar 

  • Jin T, Drucker DJ (1996) Activation of proglucagon gene transcription through a novel promoter element by the caudal-related homeodomain protein cdx-2/3. Mol & Cellular Biol 16: 19–28

    CAS  Google Scholar 

  • Kikuchi K, Yoshida K, Endo K, Aizawa Y, Fukazawa H, Mori K, Abe K (1994) Effects of thyroid hormone on carbonic anhydrase I levels in human erythroid (YN-1) cells. J Clin Endocrinol Metab 79: 71–75

    Article  PubMed  CAS  Google Scholar 

  • Kispert A, Koschorz B, Herrmann BG (1995) The T protein encoded by Brachyury is a tissue-specific transcription factor. EMBO J 14: 4763–4772

    PubMed  CAS  Google Scholar 

  • Lai L, Xu H, Wang X, Lien J, Erickson RP, Lien YH (1994) Expression of chloramphenicol acetyl transferase (CAT) activity in primary cultures of mouse renal proximal tubular cells controlled by the upstream regulatory region of carbonic anhydrase II. Clin Res 42: 95A

    Google Scholar 

  • Laverriere AC, MacNeill C, Mueller C, Poelmann RE, Burch JBE, Evans T (1994) GATA4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem 269: 23177–23184

    PubMed  CAS  Google Scholar 

  • Lee SY, Nagy BP, Brooks AR, Wand DM, Paulweber B, Levy-Wilson B (1996) Members of the caudal family of homeodomain proteins repress transcription from the human apolipoprotein B promoter family in intestinal cells. JBC 271: 707–718

    Article  CAS  Google Scholar 

  • Lloyd J, Brownson C, Tweedie S, Charlton J, Edwards YH (1987) Human muscle carbonic anhydrase: gene structure and DNA methylation patterns in fetal and adult tissues. Genes Dev 1: 594–602

    Article  PubMed  CAS  Google Scholar 

  • Lonnerholm G, Wistrand P (1983) Carbonic anhydrase in the human fetal gastrointestinal tract. Biol Neonate 44: 166–176

    Article  PubMed  CAS  Google Scholar 

  • Lowe N, Edwards YH, Edwards M, Butterwoth PHW (1991) Physical mapping of the human carbonic anhydrase gene cluster on chromosome 8. Genomics 10: 882–888

    Article  PubMed  CAS  Google Scholar 

  • Lynch CJ, Brennan WA Jr, Vary TC, Carter ND, Dodgson SJ (1993a) Carbonic anhydrase III in obese Zucker rats. Am JPhysiol 264: E621–630

    CAS  Google Scholar 

  • Lynch CJ, Hazen SA, Horetsky RL, Carter ND, Dodgson SJ (1993b) Differentiation-dependent expression of carbonic anhydrase II and III in 3T3 adipocytes. Am J Physiol 265: C234–243

    CAS  Google Scholar 

  • Lyons GE, Buckingham ME, Tweedie S, Edwards YH (1991) Carbonic anhydrase III, an early mesodermal marker, is expressed in embryonic mouse skeletal muscle and notochord. Development 111: 233–244

    PubMed  CAS  Google Scholar 

  • Marino LC (1993) Characterisation of the mouse carbonic anhydrase II gene promoter. J Biol Chem 268: 7081–7089

    CAS  Google Scholar 

  • Mezquita P, Mezquita C, Mezquita J (1999) Novel transcripts of carbonic anhydrase II in mouse and human testis. Mol Hum Reprod 5: 199–205

    Article  PubMed  CAS  Google Scholar 

  • Mezquita J, Pau M, Mezquita C (1994) A novel carbonic anhydrase II mRNA isolated from mature chicken testis displays a TATA box and other promoter sequences in a leader 5’ untranslated region not present in somatic tissues. Gene 147: 231–235

    Article  PubMed  CAS  Google Scholar 

  • Mendel DB, Crabtree GR (1991) HNF-1. a member of a novel class of dimerising homeodomain proteins. J Biol Chem 266: 677–680

    PubMed  CAS  Google Scholar 

  • Morrisey EE, Ip HS, Lu MM, Parmacek MS (1996) GATA-6: A zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol 177:09–322

    Article  PubMed  CAS  Google Scholar 

  • Miwa T, Kedes L (1987) Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human α-cardiac actin gene. Mol & Cell Biol 7: 2803–2813

    CAS  Google Scholar 

  • Miller C, McGehee RE, Habener JF (1994) IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J 13:1145–1156

    PubMed  CAS  Google Scholar 

  • Neutra M, Louvard D (1989) Differentiation of intestinal cells in vitro. In: KS Matlin, JD Valentich (eds): Functional epithelial cells in culture. Alan Liss Inc 363–398

    Google Scholar 

  • Noda C, Fukushima C, Fujiwara T, Matsuda K, Kobune Y, Ichihara A (1994) Developmental regulation of rat serine dehydratase gene expression: evidence for the presence of a repres-sor in fetal hepatocytes. Biochim Biophys Acta 1217: 163–173

    Article  PubMed  CAS  Google Scholar 

  • Pages G, Stanley ER, Le Gall M, Brunet A, Pouyssegur J (1995) The mouse p44 mitogenactivated protein kinase (extracellular signal-regulated kinase 1) gene. Genomic organisation and structure of the 5’ flanking regulatory region. J Biol Chem 270: 26986–26992

    Article  PubMed  CAS  Google Scholar 

  • Pevny L, Simon MC, Robertson E, Klein W, Tsai S-F, D’Agati V, Orkin SH, Contantini F (1991) Erythroid differentiation in chimaeric mice blocked by a target mutation in the gene for transcription factor GATA-1. Nature 349: 257–260

    Article  PubMed  CAS  Google Scholar 

  • Placzek M, Jessell T, Dodd J (1993) Induction of floor plate differentiation by contact dependent, homeogenetic signals. Development 117: 205–218

    PubMed  CAS  Google Scholar 

  • Quelo I, Kahlen J-P, Rascle A, Jurdic P, Carlberg C (1994) Identification and characterization of a vitamin D3 response element of chicken carbonic anhydrase-II. DNA & Cell Biol 13: 1181–1187

    Article  CAS  Google Scholar 

  • Raich N, Clegg CH, Grofti J, Romeo PH, Stamatoyannopoulos G (1995) GATA1 and YY1 are developmental repressors of the human epsilon-globin gene. EMBO J 14: 801–809

    PubMed  CAS  Google Scholar 

  • Rascle A, Ghysdael J, Samarut J (1994) c-ErbA, but not v-ErbA, competes with a putative erythroid repressor for binding to the carbonic anhydrase II promoter. Oncogene 9: 2853–2867

    PubMed  CAS  Google Scholar 

  • Rosewicz S, Reicken E-O, Stier U (1995) Transcriptional regulation of carbonic anhydrase II by retinoic acid in the human pancreatic tumour cell line DANG. FEBS Letts 368: 45–48

    Article  CAS  Google Scholar 

  • Roth DE, Venta PJ, Tashian RE, Sly WS (1992) Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci USA 89: 1804–1808

    Article  PubMed  CAS  Google Scholar 

  • Rudnicki MA, Jaenisch R (1995) The MyoD family to transcription factors and skeletal myogenesis. BioEssays 17: 203–209

    Article  PubMed  CAS  Google Scholar 

  • Sayama N, Yoshida K, Endo K, Kiso Y, Fukazawa H, Mori K, Kikuchi K, Aizawa Y, Hori H, Abe K (1996) Effects of thyroid hormone on carbonic anhydrase I concentration in human erythroid burst-forming unit-derived cells. Endocrinology 137: 1828–1832

    Article  PubMed  CAS  Google Scholar 

  • Shapiro LH, Venta PJ, Yu Y-SL, Tashian RE (1989) Carbonic anhydrase II is induced in LH-60 cells by 1,25-dihydroxyvitamin D3: a model for osteoclast gene regulation. FEB Letts 249: 307–310

    Article  CAS  Google Scholar 

  • Simon CM (1995) Gotta have GATA. Nature Genet 11: 9–11

    Article  PubMed  CAS  Google Scholar 

  • Sideras P, Muller S, Shiels H, Jin H, Khan WN, Nilsson L, Parkinson E, Thomas JD, Branden L, Larsson L (1994) Genomic organisation of mouse and human Bruton’s agammaglobulinemia tyrosine kinase (Btk) loci. J Immunol 153: 5607–5617

    PubMed  CAS  Google Scholar 

  • Smas CM, Sul HS (1995) Control of adipocyte differentiation. Biochem J 309: 697–710.

    PubMed  CAS  Google Scholar 

  • Sowden J, Edwards M, Morrison K, Butterworth PHW, Edwards YH (1992) Erythroid expres-sion and DNasel-hypersensitive sites of the carbonic anhydrase 1 gene. Biochem J 288:545–551

    PubMed  CAS  Google Scholar 

  • Sowden J, Leigh S, Talbot I, Delhanty J, Edwards Y (1993) Expression from the proximal promoter of the carbonic anhydrase i gene as a marker for differentiation in colon epithelia. Differentiation 53: 67–74

    Article  PubMed  CAS  Google Scholar 

  • Sowden J, Smith H, Morrison K, Edwards Y (1997) Sequence comparisons and functional studies of the proximal promoter of the carbonic anhydrase 3 (CA3) gene. Gene 214: 157–165

    Article  Google Scholar 

  • Subramanian V, Meyer BI, Gruss P (1995) Disruption of the murine homeobox gene Cdx I affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell 83: 641–653

    Article  PubMed  CAS  Google Scholar 

  • Suh E, Chen L, Taylor J, Traber PG (1994) A homeodomain protein related to caudal regulates intestine-specific gene transcription. Mol & Cellular Biol 14: 7340–7351

    CAS  Google Scholar 

  • Suh E, Traber PG (1996) An intestine specific homeobox gene regulates proliferation and differentiation. Mol Cell Biol 16: 619–625

    PubMed  CAS  Google Scholar 

  • Tashian RE (1989) The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays 10: 186–192

    Article  PubMed  CAS  Google Scholar 

  • Theirfelder W, Cummings P, Fraser P, Curtis PJ (1991) Expression of carbonic anhydrase I and II in mouse erythropoesis. In: SJ Dodgson, RE Tashian, G Gros, ND Carter (eds): Carbonic Anhydrases: Cellular Physiology & Mol Genet Edition. Plenum Press 209–215

    Google Scholar 

  • Traber PG, Wu GD, Wang W (1992) Novel DNA-binding proteins regulate intestine-specific transcription of the sucrase-isomaltase gene. Mol & Cellular Biol 12: 3614–3627

    CAS  Google Scholar 

  • Troelsen JT, Olsen J, Mitchelmore C, Hansen GH, Sjöström H, Nóren O (1994) Two intestinal specific nuclear factors binding to the lactase-phlorizin hydrolase and sucrase-isomaltase promoters are functionally related oligomeric molecules. FEBS Letts 342: 297–301

    Article  CAS  Google Scholar 

  • Troelsen JT, Mitchelmore C, Spodsberg N, Jensen AM, Noren O, Sjostrom H (1997) Regulation of lactase-phlorizin hydrolase gene expression by the caudal-related homeodomain protein Cdx-2. Biochem J 322: 833–838

    PubMed  CAS  Google Scholar 

  • Tweedie S, Morrison K, Charlton J, Edwards Y (1991) CAIII a marker for early myogenesis: Expression studies in cultured myogenic cells. Som Cell & Mol Genet 17: 215–228

    Article  CAS  Google Scholar 

  • Villeval JL, Testa U, Vinci G, Tonthat H, Bettaieb A, Titeux M, Cramer P, Edelman L et al (1985) Carbonic anhydrase I is an early specific marker of normal human erythroid differentiation. Blood 66: 1162–1170

    PubMed  CAS  Google Scholar 

  • Wang Y, Harvey C, Rousset M, Swallow D (1994) Expression of human intestinal mRNA transcripts during development: Analysis by a semi-quantitative RNA polymerase chain reaction method. Ped Res 36: 514–521

    Article  CAS  Google Scholar 

  • Wilkinson DG, Bhatt S, Herrmann BG (1990) Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343: 657–659

    Article  PubMed  CAS  Google Scholar 

  • Wright WE (1992) Muscle basic helix-loop-helix proteins and the regulation of myogenesis. Genet & Dev 2: 243–248

    Article  CAS  Google Scholar 

  • Wu GD, Chen L, Forslund, Traber PG (1994) Hepatocyte nuclear factor- 1-α (HNF-1 α) and HNF-1/β regulate transcription via two elements in an intestine-specific promoter. J Biol Chem 269: 17080–17085

    PubMed  CAS  Google Scholar 

  • Yamada T, Placzek M, Tanaka H, Dodd T, Jessell T (1991) Control of cell pattern in the devel-oping nervous system: polarizing activity of the floor plate and notochord. Cell 64: 635–647

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Kiso K, Kurihara H, Kaise K, Kaise N, Fukazawa H, Mori K, Kikuchi K, Abe K (1991) Erythrocyte carbonic anhydrase I concentration in patients receiving thyroxine. Endocrinol Jpn 38: 363–367

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Edwards, Y., Drummond, F., Sowden, J. (2000). Regulation of the CA1, CA2 and CA3 genes. In: Chegwidden, W.R., Carter, N.D., Edwards, Y.H. (eds) The Carbonic Anhydrases. EXS 90, vol 90. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8446-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8446-4_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9570-5

  • Online ISBN: 978-3-0348-8446-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics