Skip to main content

Carbonic anhydrase in the nervous system

  • Chapter

Part of the book series: EXS 90 ((EXS,volume 90))

Abstract

In the nervous system carbonic anhydrases (CAs) are located in diverse populations of cells, where they serve an impressive variety of functions. Until quite recently CA II was considered to be the only isozyme in the central nervous system (CNS) (e.g. Fillipi et al., 1978). Now CA III and CA IV have been detected in the CNS by immunocytochemical staining (Ghandour et al., 1992Nógrádi, 1993; Nógrádi et al., 1993; Brion et al., 1994), and CA IV also by its enzymatic activity in the presence of sodium dodecyl sulfate (SDS) (Brion et al., 1994). It is likely, however, that the data collected before 1990 about enzymatic activity of CA in the nervous system can be attributed largely to CA II, which is rapid and highly abundant. This chapter will address the CNS regions and types of cells in which CA II is expressed, immediately followed in each case by some discussion of the respective significance of CA II to physiological funtion, biosynthesis and/or clinical practice. CA III and CA IV also will be mentioned, more briefly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Johnson NL (1990) Inhibiting carbonic anhydrase in brain tissue increases the respiratory response to rebreathing CO2. Brain Res 519: 23–28

    PubMed  CAS  Google Scholar 

  • Agnati LF, Tinner B, Staines WA, Vaananen K, Fuxe K (1995) On the cellular localization and distribution of carbonic anhydrase II immunoreactivity in the rat brain. Brain Res 676: 10–24

    PubMed  CAS  Google Scholar 

  • Aimard G, Vighetto A, Gabet JY, Bret P, Henry E (1990) Acetazolamide: une alternative à la dérivation dans rhydrocephalie à pression normale? Résultats préliminaires. Revue Neurologique 146: 437–439

    PubMed  CAS  Google Scholar 

  • Aldskogius H, Arvidsson J, Hansson P (1988) Carbonic anhydrase enzyme histochemistry of cranial nerve primary sensory afferent neurons in the rat. Histochem 88: 151–154

    CAS  Google Scholar 

  • Anderson RE, Chiu P, Woodbury DM (1989) Mechanisms of tolerance to the anticonvulsant effects of acetazolamide in mice: relation to the activity and amount of carbonic anhydrase in brain. Epilepsia 30: 208–216

    PubMed  CAS  Google Scholar 

  • Ashby W (1943) A parallelism between the quantitative incidence of carbonic anhydrase and functional levels of the central nervous system. Journal of Cell Biology 152: 235–241

    Google Scholar 

  • Bain PG, O’Brien MD, Keevil SF, Porter DA (1992) Familial periodic cerebellar ataxia; a problem of cerebellar intracellular pH homeostasis. Annals of Neurology 67: 588–581

    Google Scholar 

  • Banks DA, Anderson RE, Woodbury DA (1986) Induction of new carbonic anhydrase II follow-ing treatment with acetazolamide in DBA and C57 mice. Epilepsia 27: 510–515

    PubMed  CAS  Google Scholar 

  • Bickler PE, Litt L, Banville DL, Severinghaus JW (1988) Effects of acetazolamide on cerebral acid-base balance. Journal of Applied Physiology 65: 422–427

    PubMed  CAS  Google Scholar 

  • Birzis L, Carter CH, Maren TH (1958) Effect of acetazolamide on CSF pressure and electrolytes in hydrocephalus. Neurology 8: 522–528

    PubMed  CAS  Google Scholar 

  • Brion LP, Suarez C, Zhang H, Cammer W (1994) Up-regulation of carbonic anhydrase isozyme IV in CNS myelin of mice genetically deficient in carbonic anhydrase II. Journal of Neurochemistry 63: 360–366

    PubMed  CAS  Google Scholar 

  • Bryant B (2000) The roles of carbonic anhydrase in gustation, defaction and chemical irritation. In: WR Chegwidden, ND Carter, YH Edwards (eds): The Carbonic Anhydrases: New Horizons, this volume

    Google Scholar 

  • Buckler KJ, Vaughan-Jones RD, Peers C, Lagadic-Gossmann D, Nye PCG (1993) The modulation of intracellular pH in carotid body glomus cells by extracellular pH and pCO2. Advances in Experimental Medicine and Biology 337: 103–109

    CAS  Google Scholar 

  • Bunge MB, Bunge RP, Pappas GD (1962) Electron microscopic demonstrations of connections between glia and myelin sheaths in the developing mammalian central nervous system. J Cell Biology 12: 448–453

    CAS  Google Scholar 

  • Cammer W (1979) Carbonic anhydrase activity in myelin from sciatic nerves of adult and young rats: quantitation and inhibitor sensitivity. Journal of Neurochemistry 32: 651–654

    PubMed  CAS  Google Scholar 

  • Cammer W, Bieler L, Fredman T, Norton WT (1977) Quantitation of myelin carbonic anhydrase: Development and subfractionation of rat brain myelin and comparison with myelin from other species. Brain Research 138: 17–28

    PubMed  CAS  Google Scholar 

  • Cammer W, Sacchi R, Sapirstein V (1985) Immunocytochemical localization of carbonic anhydrase in the spinal cords of normal and mutant (shiverer) adult mice with comparisons among fixation methods. The Journal of Histochemisay and Cytochemistry 33: 45–54

    CAS  Google Scholar 

  • Cammer W, Fredman T, Rose AL, Norton WT (1976) Brain carbonic anhydrase: Activity in isolated myelin and the effect of hexachlorophene. Journal of Neurochemistry 27: 165–171

    PubMed  CAS  Google Scholar 

  • Cammer W, Tansey FA (1987) Immunocytochemical localization of carbonic anhydrase in myelinated fibers in peripheral nerves of rat and mouse. Journal ofHistochemistry and Cytochemistry 35: 865–870

    CAS  Google Scholar 

  • Cammer W, Tansey FA (1988) Carbonic anhydrase immunostining in astrocytes in the rat cerebral cortex. Journal of Neurochemistry 50: 319–322

    PubMed  CAS  Google Scholar 

  • Cammer W, Zhang H (1996) Carbonic anhydrase II in microglia in forebrains of neonatal rats. Journal of Neuroimmunology 67: 131–136

    PubMed  CAS  Google Scholar 

  • Cammer W, Zhang H (1991) Comparison of immunocytochemical staining of astrocytes, oligodendrocytes, and myelinated fibers in the brains of carbonic anhydrase II-deficient mice and normal littermates. Journal of Neuroimmunology 34: 81–86

    PubMed  CAS  Google Scholar 

  • Cammer W, Zhang H, Tansey FA (1995) Effects of carbonic anhydrase II (CAII) deficiency on CNS structure and function in the myelin-deficient CAII-deficient double mutant mouse. Journal of Neuroscience Research 40: 451–457

    PubMed  CAS  Google Scholar 

  • Chen JCT, Chesler M (1992) pH transients evoked by excitatory synaptic transmission are increased by inhibition of extracellular carbonic anhydrase. Proceedings of the National Academy of Sciences USA 89: 7786–7790

    CAS  Google Scholar 

  • Chesler M (1990) The regulation and modulation of pH in the nervous system. Progress in Neurobiology 34: 401–427

    PubMed  CAS  Google Scholar 

  • Chesler M, Kaila K (1992) Modulation of pH by neuronal activity. Trends in Neuroscience 15: 396–402

    CAS  Google Scholar 

  • Chvatal A, Jendelova P, Kriz N, Sykova E (1988) Stimulation-evoked changes in extracellular pH, calcium and potassium activity in the frog spinal cord. Physiologia Bohemoslovaca 37: 203–212

    PubMed  CAS  Google Scholar 

  • Coates EL, Li A, Nattie EE (1993) Widespread sites of brain stem ventilatory chemoreceptors. Journal of Applied Physiology 71: 5–14

    Google Scholar 

  • Cowan F, Whitelaw A (1991) Acute effects of acetazolamide on cerebral blood flow velocity and pCO2 in the newborn infant. Acta Paediatr Scand 80: 22–27

    PubMed  CAS  Google Scholar 

  • Czernicki Z, Kuroiwa T, Ohno K, Endo S, Ito U (1994) Effect of acetazolamide on early ischemic cerebral edema in gerbils. Acta Neurochirurgica 60: 329–331

    PubMed  CAS  Google Scholar 

  • Dayson H, Luck CP (1957) The effect of acetazoleamide on the chemical composition of the aqueous humour and cerebrospinal fluid of some mammalian species and on the rate of turnover of 24Na in these fluids. Journal of Physiology 137: 279–293

    Google Scholar 

  • Delaunoy JP, Hog F, Devilliers G, Bansart M, Mandel P, Sensenbrenner M (1980) Developmental changes and localization of carbonic anhydrase in cerebral hemispheres of the rat and in rat glial cell cultures. Cellular & Molecular Biology 26: 235–240

    CAS  Google Scholar 

  • De Vitry F, Gomes D, Rataboul P, Dumas S, Hillion J, Catelon J, Delaunoy J-P, Tixier-Vidal A, Dupouey P (1989) Expression of carbonic anhydrase II gene in early brain cells as revealed by in situ hybridization and immunohistochemistry. Journal of Neuroscience Research 22: 120–129

    PubMed  Google Scholar 

  • Dichter MA, Ayala GF (1987) Cellular mechanisms of epilepsy: A status report. Science 237: 157–164

    PubMed  CAS  Google Scholar 

  • Esplin DW, Rosenstein R (1963) Analysis of spinal depressant actions of carbonic dioxide and acetazolamide. Archives Internationales de Pharmacodynamie et de Therapie 143: 499–513

    Google Scholar 

  • Filippi D, Sciaky M, Limozin N, Laurent G (1978) Anhydrase carbonique du système nerveux central du rat. Isolement et propriétés. Biochimie 60: 99–102

    PubMed  CAS  Google Scholar 

  • Forster RE (1993) Carbonic anhydrase and the carotid body. Advances in Experimental Medicine and Biology 337: 137–147

    PubMed  CAS  Google Scholar 

  • Ghandour MS, Langley OK, Zhu XL, Waheed A, Sly WS (1992) Carbonic anhydrase IV on brain capillary endothelial cells: A marker associated with the blood-brain barrier. Proceedings of the National Academy of Sciences 89: 6823–6827

    CAS  Google Scholar 

  • Ghandour MS, Skoff RP (1988) Expression of galactocerebroside in developing normal and jimpy oligodendrocytes in situ. Journal of Neurocytology 17: 485–498

    PubMed  CAS  Google Scholar 

  • Ghandour MS, Skoff RP (1991) Double-labeling in situ hybridization analysis of mRNAs for carbonic anhydrase II and myelin basic protein: expression in developing cultured glial cells. GLIA 4: 1–10

    PubMed  CAS  Google Scholar 

  • Ghandour MS, Skoff RP, Venta PJ, Tashian RE (1989) Oligodendrocytes express a normal phenotype in carbonic anhydrase II-deficient mice. Journal of Neuroscience Research 23: 180–190

    PubMed  CAS  Google Scholar 

  • Ghandour MS, Vincendon G, Gombos G, Limozin N, Filippi D, Laurent G (1980) Carbonic anhydrase and oligodendroglia in developing rat cerebellum: A biochemical and immunohistological study. Developmental Biology 77: 73–83

    PubMed  CAS  Google Scholar 

  • Giacobini E (1961) Localization of carbonic anhydrase in the nervous system. Science 134: 1524–1525

    PubMed  CAS  Google Scholar 

  • Giacobini E (1962) A cytochemical study of the localization of carbonic anhydrase in the nervous system. Journal of Neurochemistry 9: 169–177

    PubMed  CAS  Google Scholar 

  • Gottfried JA, Chesler M (1994) Endogenous H’ modulation of NMDA receptor-mediated EPSCs revealed by carbonic anhydrase inhibition in rat hippocampus. Journal of Physiology 3: 373–378

    Google Scholar 

  • Grichtchenko II, Chesler M (1994) Depolarization-induced acid secretion in gliotic hippocampal slices. Neuroscience 62: 1057–1079

    PubMed  CAS  Google Scholar 

  • Guillaume D, Grisar T, Vergniolle-Burette M (1991) Glial contribution to seizure: carbonic anhydrase activity in epileptic mammalian brain. Epilepsia 32: 10–15

    PubMed  CAS  Google Scholar 

  • Heinemann W, Eder C, Lab A (1995) Epilepsy. In: H Kettenmann, BR Ransom (eds): Neurologia, Oxford University Press, New York, 936–949

    Google Scholar 

  • Huang W, Smith SE, Chesler M (1995) Addition of carbonic anhydrase augments extracellular pH buffering in rat cerebral cortex. Journal of Neurophysiology 74: 1806–1809

    PubMed  CAS  Google Scholar 

  • Iturriaga R, Lahiri S (1993) Carbonic anhydrase and carotid body chemoreception in the presence and absence of CO2-HCO3. Advances in Experimental Medicine and Biology 337: 171–176

    PubMed  CAS  Google Scholar 

  • Jeffrey M, Wells GAH, Bridges AW (1991) Carbonic anhydrase II expression in fibrous astrocytes of the sheep. Journal of Comparative Pathology 104: 337–343

    PubMed  CAS  Google Scholar 

  • Jendelová P, Syková E (1991) Role of glia in K+ and pH homeostasis in the neonatal rat spinal cord. GLIA 4: 56–63

    PubMed  Google Scholar 

  • Johanson CE, Sweeney SM, Parmelee JT, Epstein MH (1990) Cotransport of sodium and chloride by the adult mammalian choroid plexus. Journal of Applied Physiology: C211–C216

    Google Scholar 

  • Kato K (1990) Sequence of a novel carbonic anhydrase-related polypeptide and its exclusive presence in Purkinje cells. FEBS Letters 271: 137–140

    PubMed  CAS  Google Scholar 

  • Kazimierczak J, Sommer EW, Philippe E, Droz B (1986) Carbonic anhydrase activity in primary sensory neurons. Cell Tissue Research 245: 487–495

    PubMed  CAS  Google Scholar 

  • Kimelberg HK (1995) Brain edema. In: H Kettenmann, BR Ransom (eds): Neuroglia, Oxford University Press, New York, 919–935

    Google Scholar 

  • Kimelberg HK, Narumi S, Bourke RS (1978) Enzymatic and morphological properties of primary rat brain astrocyte cultures, and enzyme development in vivo. Brain Research 153: 55–77

    PubMed  CAS  Google Scholar 

  • Kimelberg K, Ransom BR (1986) Physiological and pathological aspects of astrocytic swelling. In: S Fedoroff, A Vernadakis (eds): Astrocytes cell biology and pathology of astrocytes, Volume 3, Academic Press, 129–166

    Google Scholar 

  • Korhonen L, Hyyppä M (1967) Histochemical localization of carbonic anhydrase activity in the spinal and coeliac ganglia of the rat. Acta Histochem 26: 75–79

    PubMed  CAS  Google Scholar 

  • Krueger NX, Saito H (1992) A human transmembrane protein-tyrosine-phosphatase, PTP zeta, is expressed in brain and has an N-terminal receptor domain homologous to carbonic anhydrases. Proceedings of the National Academy of Sciences USA 89: 7417–7421

    CAS  Google Scholar 

  • Kumpulainen T, Korhonen LK (1982) Immunohistochemical localization of carbonic anhydrase isoenzyme C in the central and peripheral nervous system of the mouse. The Journal of Histochemistry and Cytochemistry 30: 283–292

    PubMed  CAS  Google Scholar 

  • Kumpulainen T, Nyström SHM (1981) Immunohistochemical localization of carbonic anhydrase isoenzyme C in human brain. Brain Research 220: 220–225

    PubMed  CAS  Google Scholar 

  • Langley OK, Ghandour MS, Vincendon G, Gombos G (1980) Carbonic anhydrase: an ultra-structural study in rat cerebellum. Histochemical Journal 12: 473–483

    PubMed  CAS  Google Scholar 

  • Lawrence F, Guth L (1983) Carbonic anhydrase activity in first-order sensory neurons of the rat. The Journal of Histochemistry and Cytochemistry 31: 293–300

    Google Scholar 

  • Levy JB, Canoll PD, Silvennoinen O, Barnea G, Morse B, Honegger AM, Huang JT, Cannizzaro LA, Park SH, Druck T et al (1993) The cloning of a receptor-type protein tyrosine phosphatase expressed in the central nervous system. Journal of Biological Chemistry 268: 10573–10581

    PubMed  CAS  Google Scholar 

  • Li J, Chow SY (1994) Subcellular distribution of carbonic anhydrase and Na+, K+-ATPase in the brain of the hyt/hyt hypothyroid mice. Neurochemical Research 19: 83–88

    PubMed  CAS  Google Scholar 

  • Linser PJ (1985) Multiple marker analysis in the avian optic tectum reveals three classes of neuroglia and carbonic anhydrase-containing neurons. Journal of Neuroscience 5: 2388–2396

    PubMed  CAS  Google Scholar 

  • Linser PJ, Cohen JL (1991) Function and regulation of the carbonic anhydrases in the vertebrate neural retina. In: SJ Dodgson, RE Tashian, G Gros, ND Carter (eds): The Carbonic Anhydrases. Plenum Press, New York and London, 309–317

    Google Scholar 

  • Lyons GE, Buckingham ME, Tweedie S, Edwards YH (1991) Carbonic anhydrase III, an early mesoderm marker, is expressed in embryonic mouse skeletal muscle and notochord. Development 111: 233–244

    PubMed  CAS  Google Scholar 

  • Maren TH (1967) Carbonic anhydrase: chemistry, physiology, and inhibition. Physiological Reviews 47: 595–780

    PubMed  CAS  Google Scholar 

  • Maren TH (1972) Bicarbonate formation in cerebrospinal fluid: role in sodium transport and pH regulation. American Journal of Physiology 222: 885–899

    PubMed  CAS  Google Scholar 

  • Maren TH (1984) The general physiology of reactions catalyzed by carbonic anhydrase and their inhibition by sulfonamides. Ann NY Academy of Sciences 429: 568–579

    CAS  Google Scholar 

  • Maren TH (1988) The kinetics of HCO3-synthesis related to fluid secretion, pH control, and CO2 elimination. Annual Review Physiology 50: 695–717

    CAS  Google Scholar 

  • Maren TH, Mayer E, Wadsworth BC (1954) Carbonic anhydrase inhibition. I. The pharmacology of Diamox, 2-acetylamino-1,3,4-thiadiazole-5-sulfonamide. Bulletin Johns Hopkins Hospital 95: 199–243

    CAS  Google Scholar 

  • Maren TH (2000) Carbonic anhydrase inhibition in ophthamology. Aqueous humour secretion and development of sulphonamide inhibitors. In: WR Chegwidden, ND Carter, YH Edwards (eds): The Carbonic Anhydrases: New Horizons, this volume

    Google Scholar 

  • Masuzawa T, Hasegawa T, Nakahara N, Iida K, Sato F (1984) Localization of carbonic anhydrase in the rat choroid plexus epithelial cell. Annals NY Academy of Sciences 424: 405–407

    Google Scholar 

  • Masuzawa T, Sato F (1983) The enzyme histochemistry of the choroid plexus. Brain 106: 55–99

    PubMed  Google Scholar 

  • Maurel P, Rauch U, Flad M, Margolis RK, Margolis RU (1994) Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase. Proceedings of the National Academy of Science of the USA 91: 2512–2516

    CAS  Google Scholar 

  • Mayeux V, Pons F, Baldy-Mouliner M, Valmier J (1996) Early postnatal muscle contractile activity regulates the carbonic anhydrase phenotype of propioceptive neurons in young and mature mice: evidence for a critical period in development. Neuroscience 71: 787–795

    PubMed  CAS  Google Scholar 

  • Mayeux V, Valmier J (1995) Skeletal muscle contraction modulates carbonic anhydrase phenotype in adult mouse dorsal root ganglion. Brain Research 694: 191–199

    PubMed  CAS  Google Scholar 

  • McCarthy KD, Reed DJ (1974) The effect of acetazolamide and furosemide on cerebrospinal fluid production and choroid plexus carbonic anhydrase activity. Journal of Pharmacology and Experimental Therapeutics 189: 194–201

    PubMed  CAS  Google Scholar 

  • McKinley DN, Whitney PL (1976) Particulate carbonic anhydrase in homogenates of human kidney. Biochim Biophys Acta 445: 780–790

    PubMed  CAS  Google Scholar 

  • Milhorat TH, Hammocck MK (1983) Cerebrospinal fluid as a reflection of internal milieu of brain. In: JH Wood (ed): Neurobiology of Cerebrospinal Fluid, Volume 2, Plenum Press, New York, 1–23

    Google Scholar 

  • Nógrádi A (1993) Differential expression of carbonic anhydrase isozymes in microglial cell types. GLIA 8: 133–142

    PubMed  Google Scholar 

  • Nógrádi A, Kelly C, Carter ND (1993) Localization of acetazolamide-resistant carbonic anhydrase III in human and rat choroid plexus by immunocytochemistry and in situ hybridisation. Neuroscience Letters 151: 162–165

    PubMed  Google Scholar 

  • Nógrádi A, Király E, Mihály A (1989) Neuronal carbonic anhydrase activity in the central nervous system of the rat: Light-and electron histochemical investigations of the islands of Calleja. Acta Histochem 85: 187–193

    PubMed  Google Scholar 

  • Neubauer JA (1991) Carbonic anhydrase and sensory function in the central nervous system. In: SJ Dodgson, RE Tashian, G Gros, ND Carter (eds): The Carbonic Anhydrases: Cellular Physiology and Molecular Genetics. Plenum Press, New York and London

    Google Scholar 

  • Nógrádi A, Mihály A (1990) Light microscopic histochemistry of the postnatal development and localization of carbonic anhydrase activity in glial and neuronal cell types of the rat central nervous system. Histochemistry 94: 441–447

    PubMed  Google Scholar 

  • Nógrádi A, Mihály A (1991) Expression and quantitative changes of carbonic anhydrase in developing neurones of rat central nervous system. International Journal of Developmental Neuroscience 9: 555–561

    Google Scholar 

  • Odarjuk J, Lun A, Moller R, Pohle R, Meyer W, Gross J (1986) Influence of a perinatal hypoxia and the carbonic anhydrase activity in different brain regions of the rat. Biomedica Biochimia Acta 45: 1043–1048

    CAS  Google Scholar 

  • Peles E, Nativ M, Campbell PL, Sakurai T, Martinez R, Lev S, Clary DO, Schilling J, Barnea G, Plowman GD et al (1995) The carbonic anhydrase domain of receptor tyrosine phosphatase beta is a functional ligand for the axonal cell recognition molecule contactin. Cell 82: 251–260

    PubMed  CAS  Google Scholar 

  • Peters A (1964) Observations on the connexions between myelin sheaths and glial cells in the optic nerve of young rats. J Anatomy 98: 125–134

    CAS  Google Scholar 

  • Ptacek LJ, Tawil R, Griggs RC, Meola G, McManis P, Barohn RJ, Mendell JR, Harris D, Spitzer R, Santiago F, Leppert MF (1994) Sodium channel mutations in acetazolamide-responsive myotonia congenita, paramyotonia congenita, and hyperkalemic periodic paralysis. Neurology 44: 1500–1503

    PubMed  CAS  Google Scholar 

  • Ridderstråle Y, Hanson MA (1984) Histochemical localization of carbonic anhydrase in the cat carotid body. Anuals NY Academy of Sciences 429: 398–400

    Google Scholar 

  • Ridderstråle Y, Hanson MA (1985) Histochemical study of the distribution of carbonic anhydrase in the cat brain. Acta Physiol Scand 124: 557–564

    PubMed  Google Scholar 

  • Riley DA, Ellis S, Bain LW (1984) Ultrastructural cytochemical localization of carbonic anhydrase activity in rat peripheral sensory and motor nerves, dorsal root ganglia and dorsal column nuclei. Neuroscience 13: 189–206

    PubMed  CAS  Google Scholar 

  • Riley DA, Ellis S, Bain LW (1982) Carbonic anhydrase activity in skeletal muscle fiber types, axons, spindles, and capillaries of rat soleus and extensor digitorum longus muscles. Journal of Histochemistry and Cytochemistry 30: 1275–1288

    PubMed  CAS  Google Scholar 

  • Riley DA, Sanger JR, Matloub HS, Yousif NJ, Bain JLW, Moore GH (1988) Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities. Brain Research 453: 79–88

    PubMed  CAS  Google Scholar 

  • Rogers JH, Hunt SP (1987) Carbonic anhydrase-II messenger RNA in neurons and glia of chick brain: mapping by in situ hybridization. Neuroscience 23: 343–361

    PubMed  CAS  Google Scholar 

  • Roussel G, Delaunoy J-P, Nussbaum J-L, Mandel P (1979) Demonstration of a specific localization of carbonic anhydrase C in the glial cells of rat CNS by an immunohistochemical method. Brain Research 160: 47–55

    PubMed  CAS  Google Scholar 

  • Sapirstein VS, Lees MB (1978) Purification of myelin carbonic anhydrase. Journal of Neurochemistry 31: 505–511

    PubMed  CAS  Google Scholar 

  • Sapirstein VS, Strocchi P, Gilbert JM (1984) Properties and function of brain carbonic anhydrase. Anuals NY Academy of Sciences 429: 481–493

    CAS  Google Scholar 

  • Sapirstein VS, Strocchi P, Wesolowski M, Gilbert JM (1983) Characterization and biosynthesis of soluble and membrane-bound carbonic anhydrase in brain. Journal of Neurochemistry 40: 1251–1261

    PubMed  CAS  Google Scholar 

  • Sato S, Zhu XL, Sly WS (1990) Carbonic anhydrase isozymes IV and II in urinary membranes from carbonic anhydrase II-deficient patients. Proc Nail Acad Sci USA 87: 6073–6076

    CAS  Google Scholar 

  • Shinnar S, Gammon K, Bergman EW Jr, Epstein M, Freeman JM (1985) Management of hydrocephalus in infancy: use of acetazolamide and furosemide to avoid cerebrospinal fluid shunts. Journal of Pediatrics 107: 31–37

    PubMed  CAS  Google Scholar 

  • Smith QR, Johanson CE (1991) Chloride efflux from isolated choroid plexus. Brain Research 562: 306–310

    PubMed  CAS  Google Scholar 

  • Stensaas LJ, Stensaas SS (1968) Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. II. Electron Microscopy. Zeitschrift für Zellforschung and Mikroskopische Anatomie 86: 184–213

    CAS  Google Scholar 

  • Sperber EF, Moshe SL (1988) Age-related differences in seizure susceptibility to flurothyl. Developmental Brain Research 39: 295–297

    CAS  Google Scholar 

  • Svboda J (1990) Extracellular alkaline-acid-alkaline transients in the rap spinal cord evoked by peripheral stimulation. Brain Research 512: 191–189

    Google Scholar 

  • Swenson ER (2000) Respiratory and renal roles of carbonic anhydrase in gas exchange and acid-base regulation. In: WR Chegwidden, ND Carter, YH Edwards (eds): The Carbonic Anyhdrases: New Horizons,this volume

    Google Scholar 

  • Swenson ER, Leatham KL, Roach RC, Schoene RB, Mills WJ Jr, Hackett PH (1991) Renal carbonic anhydrase inhibition reduces high altitude sleep periodic breathing. Respiration Physiology 86: 333–343

    CAS  Google Scholar 

  • Syková E, Chvatal A (1993) Extracellular ionic and volume changes: the role in glia-neuron interaction. Journal of Chemical Neuroanatomy 6: 247–260

    PubMed  Google Scholar 

  • Szabolcs MJ, Kopp M, Schaden GE (1989) Carbonic anhydrase activity in the peripheral nervous system of rat: the enzyme as a marker for muscle afferents. Brain Research 492: 129–138

    PubMed  CAS  Google Scholar 

  • Szabolcs MJ, Windisch A, Koller R, Pensch M (1991) Axon typing of rat muscle nerves using a double staining procedure for cholinesterase and carbonic anhydrase. Journal of Histochemistry & Cytochemistry 39: 1617–1625

    CAS  Google Scholar 

  • Tang C-M, Dichter M, Morad M (1990) Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proceedings of the National Academy of Sciences USA 87: 6445–6449

    CAS  Google Scholar 

  • Tansey FA, Thampy KG, Cammer W (1988) Acetyl-CoA carboxylase in rat brain. II. Immunocytochemical localization. Developmental Brain Research 43: 131–138

    CAS  Google Scholar 

  • Tansey FA, Zhang H, Cammer W (1996) Expression of carbonic anhydrase II mRNA and protein in oligodendrocytes during toxic demyelination in the young adult mouse. Neurochemical Research 21: 411–416

    PubMed  CAS  Google Scholar 

  • Tashian RE (1992) Genetics of the mammalian carbonic anhydrases. Advances in Genetics 30: 321–356

    PubMed  CAS  Google Scholar 

  • Tashian RE, Hewett-Emmett D, Carter ND, Bergenhem NCH (2000) Carbonic anhydrase (CA)-related proteins (CA-RPs), and transmembrane proteins with CA or CA-RP domains. In: WR Chegwidden, ND Carter, YH Edwards (eds): The carbonic anhydrases: New Horizons, this volume

    Google Scholar 

  • Taira T, Paalasmaa P, Voipio J, Kaila K (1995) Relative contributions of excitatory and inhibitory neuronal activity to alkaline transients evoked by stimulation of Schaffer collaterals in the rat hippocampal slice. Journal of Neurophysiology 74: 643–649

    PubMed  CAS  Google Scholar 

  • Trachtenberg MC, Sapirstein VS (1980) Carbonic anhydrase distributions in central and peripheral nervous system of the rat. Neurochemical Research 5: 573–581

    PubMed  CAS  Google Scholar 

  • Truitt EB, Ebesberg EM, Ling ASG (1960) Measurement of brain excitability by use of hexafluorodiethyl ether (Indoclon). Journal of Pharmacological Experimental Therapeutics 129: 445–453

    CAS  Google Scholar 

  • Velíšek L, Moshé SJ, Xu S-G, Cammer W (1993) Reduced susceptibility to seizures in carbonic anhydrase II deficient mutant mice. Epilepsy Research 14: 115–121

    PubMed  Google Scholar 

  • Vogh BP (1980) The relation of choroid plexus carbonic anhydrase activity to cerebrospinal fluid formation: Study of three inhibitors in cat with extrapolation to man. Journal of Pharmacology and Experimental Therapeutics 213: 321–331

    PubMed  CAS  Google Scholar 

  • Vogh BP, Maren TH (1975) Sodium, chloride, and bicarbonate movement from plasma to cerebrospinal fluid in cats. American Journal of Physiology 228: 673–683

    PubMed  CAS  Google Scholar 

  • Voipio J, Paalasmaa P, Taira T, Kaila K (1995) Pharmacological characterization of extracellular pH transients evoked by selective synaptic and exogenous activation of AMPA, NMDA, and GABAA receptors in the rat hippocampal slice. Journal of Neurophysiology 74: 633–642

    PubMed  CAS  Google Scholar 

  • Waite M, Wakil SJ (1962) Studies on the mechanism of fatty acid synthesis. The Journal of Biological Chemistry 237: 2750–2757

    PubMed  CAS  Google Scholar 

  • Walz W (1989) pH shifts evoked by neuronal stimulation in slices of rat hippocampus. Canadian Journal of Physiology and Pharmacology 67: 577–581

    PubMed  CAS  Google Scholar 

  • White HS, Chen CF, Kemp JW, Woodbury DM (1985) Effects of acute and chronic phenytoin on the electrolyte content and the activities of Na+, K+, Ca2+, Mg2+-, and HCO 3 -ATPases and carbonic anhydrase of neonatal and adult rat cerebral cortex. Epilepsia 26: 43–57

    PubMed  CAS  Google Scholar 

  • White HS, Woodbury DM, Chen CF, Kemp JW, Chow SY, Yen-Chow YC (1986) Role of glial cation and anion transport mechanisms in etiology and arrest of seizures. Advances in Neurology 44: 695–712

    PubMed  CAS  Google Scholar 

  • Wilke RA, Riley DA, Sanger JR (1992) Histochemical discrimination of fibers in regenerating rat infraorbital nerve. Microsurgery 13: 39–44

    PubMed  CAS  Google Scholar 

  • Wood P, Bunge RB (1984) The biology of the oligodendrocyte. In: W Norton (ed): Oligodendroglia. Plenum Press, New York and London 1–46

    Google Scholar 

  • Woodbury DM (1980) Carbonic anhydrase inhibitors. Advances in Neurology 27: 617–633

    PubMed  CAS  Google Scholar 

  • Wong V, Barrett CP, Donati EJ, Guth L (1987) Distribution of carbonic anhydrase activity in neurons of the rat. Journal of Comparative Neurology 257: 122–129

    PubMed  CAS  Google Scholar 

  • Yamashita H, Sekitani T, Bagger-Sjoback D (1992) Expression of carbonic anhydrase isoenzyme-like immunoreactivity in the limbus spiralis of the human fetal cochlea. Hearing Research 64: 118–122

    PubMed  CAS  Google Scholar 

  • Yandrasitz JR, Ernst SA, Salganicoff L (1976) The subcellular distribution of carbonic an-hydrase in homogenates of perfused rat brain. Journal of Neurochemistry 27: 707–715

    PubMed  CAS  Google Scholar 

  • Yanagisawa K, Ishigro H, Kaneko K, Miyatake T (1990) Acetazolamide inhibits the recovery from triethyl tin intoxication: putative role of carbonic anhydrase in dehydration of central myelin. Neurochemical Research 15: 483–486

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Cammer, W.B., Brion, L.P. (2000). Carbonic anhydrase in the nervous system. In: Chegwidden, W.R., Carter, N.D., Edwards, Y.H. (eds) The Carbonic Anhydrases. EXS 90, vol 90. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8446-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8446-4_24

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9570-5

  • Online ISBN: 978-3-0348-8446-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics