Skip to main content

Inherited deficiencies and activity variants of the mammalian carbonic anhydrases

  • Chapter
The Carbonic Anhydrases

Part of the book series: EXS 90 ((EXS,volume 90))

Abstract

The carbonic anhydrases are involved in a variety of physiological functions that are important for the survival of nearly all species. The most important biochemical function of these enzymes is the interconversion of carbon dioxide and water into bicarbonate ions and protons. These metabolites are used in a wide variety of metabolic pathways (Tashian, 1989). Some of the enzymes have other catalytic activities, although their physiological importance is not understood at this time (Verpoorte et al., 1967; Cabiscol and Levine, 1996). In humans, twelve carbonic anhydrases or carbonic anhydrase-related proteins are known to exist that belong to the alpha family of CAs (Hewett-Emmett and Tashian, 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergenhem NCH, Venta PJ, Hopkins PJ, Kim HJ, Tashian RE (1992) Mutation creates an open reading frame within the 5´ untranslated region of macaque erythrocyte carbonic anhydrase (CA) I mRNA that suppresses CA I expression and supports the scanning model for translation. Proc Nati Acad Sci USA 89: 8798–8802

    Article  CAS  Google Scholar 

  • Boyer SH, Siggers DC, Kreuger LJ (1973) Caveat to protein replacement therapy for genetic disease. Immunological implications of accurate molecular diagnosis. Lancet 2 (830): 654–659

    Article  PubMed  CAS  Google Scholar 

  • Brion LP, Suarez C, Zhang H, Cammer W (1994) Up-regulation of carbonic anhydrase isozyme IV in CNS of mice genetically deficient in carbonic anhydrase II. J Neurochem 63: 360–366

    Article  PubMed  CAS  Google Scholar 

  • Cabiscol E, Levine RL (1996) The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation. Proc Nad Acad Sci USA 93: 4170–4174

    Article  CAS  Google Scholar 

  • Carter ND (1972) Carbonic anhydrase II polymorphism in Africa. Hum Hered 22: 539–541

    Article  PubMed  CAS  Google Scholar 

  • Carter ND, Tanis RJ, Tashian RE, Ferrell RE (1973) Characterization of a new variant of human red cell carbonic anhydrase I, Ca If London (102 Glu → Lys). Biochem Genet 10: 399–408

    Article  PubMed  CAS  Google Scholar 

  • Chegwidden WR, Wagner LE, Yenta PJ, Bergenhem NCH, Yu Y-SL, Tashian RE (1994) Marked zinc activation of ester hydrolysis by a mutation 67-His (CAT) to Arg (CGT), in the active site of human carbonic anhydrase I. Hum Mutat 4: 294–296

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg G (1938) On rare defects in human populations with particular regard to inbreeding and isolation effects. Proc Roy Soc Edinburgh 58: 213–232

    Google Scholar 

  • Dean M, Stephens JC, Winkler C, Lomb DA, Ramsburg M, Boaze R, Stewart C, Charbonneau L, Goldman D, Albaugh BJ et al. (1994) Polymorphic admixture typing in human ethnic populations. Am J Hum Genet 55: 788–808

    PubMed  CAS  Google Scholar 

  • Edwards Y, Williams S, West L, Lipowicz S, Sheer D, Attwood J, Sarkar R, Saha N, Povey S (1990) The polymorphic human DNA sequence D8S8 assigned to 8q13–21.1, close to the carbonic anhydrase gene cluster, by isotopic and nonisotopic in situ hybridization and by linkage analysis. Ann Hum Genet 54: 131–139

    Article  PubMed  CAS  Google Scholar 

  • Fathallah DM, Bejaoui M, Sly WS, Lakhoua R, Dellagi K (1994) A unique mutation underlying carbonic anhydrase II deficiency syndrome in patients of Arab descent. Hum Genet 94: 581–582

    Article  PubMed  CAS  Google Scholar 

  • Ghandour MS, Skoff RP, Venta PJ, Tashian RE (1989) Ologodendrocytes express a normal phenotype in carbonic anhydrase II-deficient mice. J Neurosci Res 23: 180–190

    Article  PubMed  CAS  Google Scholar 

  • Giannelli F, Choo KH, Rees DJG, Boyd Y, Rizza CR, Brownlee GG (1983) Gene deletions in patients with haemophilia B and anti-factor IX antibodies. Nature 303: 181–182

    Article  PubMed  CAS  Google Scholar 

  • Goriki K, Kawamoto S, Tashian RE (1980) The new variant carbonic anhydrase in the Japanese: CAINakasaki 1 (76 Arg → Gln) and CAIHiroshima 2. Hemoglobin 4: 653–657

    Article  PubMed  CAS  Google Scholar 

  • Hewett-Emmett D, Welty RJ, Tashian RE (1983) A widespread silent polymorphism of human carbonic anhydrase III (31 Ile in equilibrium Val): implications for evolutionary genetics. Genetics 105: 409–420

    PubMed  CAS  Google Scholar 

  • Hewett-Emmett D, Tashian RE (1996) Functional diversity, conservation, and convergence in the evolution of the α-, β-, and Îł-carbonic anhydrase gene families. Mol Phylogenet Evol 5: 50–77

    Article  PubMed  CAS  Google Scholar 

  • Hu PY, Roth DE, Skaggs LA, Venta PJ, Tashian RE, Guibaud P, Sly WS (1992) A splice junction mutation in intron 2 of the carbonic anhydrase II gene of osteopetrosis patients from Arabic countries. Hum Mutat 1: 288–292

    Article  PubMed  CAS  Google Scholar 

  • Hu PY, Ernst AR, Sly WS, Venta PJ, Skaggs LA, Tashian RE (1994) Carbonic anhydrase II deficiency: single-base deletion in exon 7 is the predominant mutation in Caribbean Hispanic patients. Am J Hum Genet 54: 602–608

    PubMed  CAS  Google Scholar 

  • Hu PY, Waheed A, Sly WS (1997) Partial rescue of human carbonic anhydrase II frameshift mutation by ribosomal frameshift. Proc Natl Acad Sci USA 92: 2136–2140

    Article  Google Scholar 

  • Jones GL (1982) A chemical and enzymological account of the effects of genetic and post-translational modifications on human erythrocyte CA II: Description of a new variant CA II Melbourne. Proc Hum Genet Soc Australia 6: 45

    Google Scholar 

  • Jones GL, Shaw DC (1982) A polymorphic variant of human erythrocyte carbonic anhydrase I with widespread distribution in Australian Aborigines, CA I Australia-9 (8 Asp → Gly). Biochem Genet 20: 943–977

    Article  PubMed  CAS  Google Scholar 

  • Jones GL, Sofro ASM, Shaw DC (1982) Chemical and enzymological characterization of an Indonesian variant of human erythrocyte carbonic anhydrase II, CA II Jogjakarta (17 His → Glu). Biochem Genet 20: 979–1000

    Article  PubMed  CAS  Google Scholar 

  • Kageoka T, Hewett-Emmett D, Stroup SK, Yu Y-L, Tashian RE (1981) Amino acid substitution and chemical characterization of a Japanese variant of carbonic anhydrase I: CA I Hiroshima-1 (86 Asp → Gly). Biochem Genet 19: 535–549

    Article  PubMed  CAS  Google Scholar 

  • Kendall AG, Tashian RE (1977) Erythrocyte carbonic annhydrase I: Inherited deficiency in humans. Science 197: 471–472

    Article  PubMed  CAS  Google Scholar 

  • Lai L-W, Chan DM, Erickson RP, Hsu SJ, Lien Y-HH (1998) Correction of renal tubular acidosis in carbonic anhydrase II-deficient mice with gene therapy. J Clin Invest 101: 1320–1325

    Article  PubMed  CAS  Google Scholar 

  • Lewis SE, Erickson RP, Barnett LB, Venta PJ, Tashian RE (1988) N-ethyl-N-nitrosoureainduced null mutation at the mouse Car-2 locus: an animal model for human carbonic anhydrase II deficiency syndrome. Proc Natl Acad Sci USA 85: 1962–1966

    Article  PubMed  CAS  Google Scholar 

  • Lin K-TD, Deutsch HF (1972) Human carbonic anhydrases. VIII. Isolation and characterization of a polymorphic form of a C type isozyme. J Biol Chem 247: 3761–3766

    PubMed  CAS  Google Scholar 

  • Mancuso DJ, Tuley EA, Castillo R, de Bosch N, Mannucci PM, Sadler JE (1994) Characterization of partial gene deletions in type III von Willebrand disease with alloantibody inhibitors. Throm Haemost 72: 180–185

    CAS  Google Scholar 

  • Meldrum NU, Roughton FJW (1933) Carbonic anhydrase: Its preparation and properties. J Physiol 80: 113–142

    PubMed  CAS  Google Scholar 

  • Mohrenweiser HW, Larsen RD, Neel JV (1989) Development of molecular approaches to estimating germinal mutation rates. I. Detection of insertion/deletion/rearrangements variants in the human genome. Mutation Res 212: 241–252

    Article  PubMed  CAS  Google Scholar 

  • Mohrenweiser H, Neel JV, Mestriner MA, Salzano FM, Migliazza E, Simoes AL, Yoshihara CM (1979) Electrophoretic variants in three Amerindian tribes: the Baniwa, Kanamari, and Central Pano of western Brazil. Am J Phys Anthropol 50: 237–246

    Article  PubMed  CAS  Google Scholar 

  • Osborne WRA, Tashian RE (1974) Thermal inactivation studies of normal and variant human erythrocyte carbonic anhydrases by using a sulphonamide-binding assay. Biochem J 141: 219–225

    PubMed  CAS  Google Scholar 

  • Roth DE, Venta PJ, Tashian RE, Sly WS (1992) Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci USA 89: 1804–1808

    Article  PubMed  CAS  Google Scholar 

  • Sly WS, Hewett-Emmett D, Whyte MP, Yu Y-SL, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Nail Acad Sci USA 80: 2752–2756

    Article  CAS  Google Scholar 

  • Sly WS, Whyte MP, Sundram V, Tashian RE, Hewett-Emmett D, Guibaud P, Vainsel M, Baluarte HJ, Gruskin A, Al-Mosawi M, Sakati N, Ohlsson A (1985) Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. New Eng J Med 313: 139–145

    Article  PubMed  CAS  Google Scholar 

  • Sly WS, Hu PY (1995a) The carbonic anhydrase II deficiency syndrome: osteopetrosis with renal tubular acidosis and cerebral calcification. In: A Beaudet, WS Sly, D Valle (eds): The metabolic basis of inherited disease, Seventh Edition, McGraw-Hill, New York, 4113–4124

    Google Scholar 

  • Sly WS, Hu PY (1995b) Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 64: 375–401

    Article  CAS  Google Scholar 

  • Soda H, Yukizane S, Koga Y, Aramaki S, Kato H (1996) A point mutation in exon 3 (His 107 Tyr) in two unrelated Japanese patients with carbonic anhydrase II deficiency and central nervous system involvement. Hum Genet 97: 435–437

    Article  PubMed  CAS  Google Scholar 

  • Soda H, Yukizane S, Yoshida I, Aramaki S, Kato H (1995) Carbonic anhydrase II deficiency in a Japanese patient produced by a nonsense mutation (TAT → TAG) at Tyr 40 in exon 2, (Y40X). Hum Mutat 5: 348–350

    Article  PubMed  CAS  Google Scholar 

  • Tanis RJ, Ferrell RE, Tashian RE (1973) Substitution of lysine for threonine at position 100 in human carbonic anhydrase Id Michigan. Biochem Biophys Res Commun 51: 699–703

    Article  PubMed  CAS  Google Scholar 

  • Tashian RE, Riggs SK, Yu Y-L (1966) Characterization of a mutant human erythrocyte carbonic anhydrase: carbonic anhydrase Ic Guam. The amino acid substitution and carboxylesterase and hydratase activities. Arch Biochem Biophys 117: 320–327

    Article  PubMed  CAS  Google Scholar 

  • Tashian RE (1989) The carbonic anhydrases: Widening perspectives on their evolution, expression, and function. BioEssays 10: 186–192

    Article  PubMed  CAS  Google Scholar 

  • Tashian RE (1992) Genetics of the mammalian carbonic anhydrases. Adv Genet 30: 321–357

    Article  PubMed  CAS  Google Scholar 

  • Tashian RE, Kendall AG, Carter ND (1980) Inherited variants of human red cell carbonic anhydrases. Hemoglobin 4: 635–651

    Article  Google Scholar 

  • Tashian RE, Hewett-Emmett D, Goodman M (1983) On the evolution and genetics of carbonic anhydrases I, II, and III. Isoymes: Curr Top Biol Med Res 7: 79–100

    CAS  Google Scholar 

  • Tashian RE, Plato CC, Shows TB Jr (1963) Inherited variant of erythrocyte carbonic anhydrase in Micronesians from Guam and Saipan. Science 140: 53–54

    Article  PubMed  CAS  Google Scholar 

  • Tashian RE, Venta PJ, Nicewander PH, Hewett-Emmett D (1990) Evolution, structure, and expression of the carbonic anhydrase multigene family. Prog Clin Biol Res 344: 159–175

    PubMed  CAS  Google Scholar 

  • Tu C, Couton JM, Van Heeke G, Richards NGJ, Silverman DN (1993) Kinetic analysis of a mutant (His107 → Tyr) responsible for human carbonic anhydrase II deficiency syndrome. J Biol Chem 268: 4775–4779

    PubMed  CAS  Google Scholar 

  • Venta PJ, Hewett-Emmett D, Tashian RE (1991b) Simple method to convert DNA sequence variation into sites cut by restriction endonucleases: utility shown by typing the human CA3 and mouse strain Car-2 polymorphisms. Am J Hum Genet 49: 445

    Google Scholar 

  • Venta PJ, Tashian RE (1990) PCR detection of the TaqI polymorphism at the CA2 locus. Nucleic Acids Res 18: 5585

    Article  PubMed  CAS  Google Scholar 

  • Venta PJ, Tashian RE (1991) PCR detection of a BstNI RSP in exon 6 of the human carbonic anhydrase II locus, CA2. Nucleic Acids Res 19: 4795

    Article  PubMed  CAS  Google Scholar 

  • Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE (1991a) Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His → Tyr): complete structure of the normal human CA II gene. Am J Hum Genet 49: 1082–1090

    CAS  Google Scholar 

  • Verpoorte JA, Mehta S, Edsall JT (1967) Esterase activities of human carbonic anhydrase B and C. J Biol Chem 242: 4221–4229

    PubMed  CAS  Google Scholar 

  • Velisek L, Moshe SL, Cammer W (1993) Reduced susceptibility to seizures in carbonic anhydrase II-deficient mutant mice. Brain Res Dev Brain Res 72: 321–324

    Article  PubMed  CAS  Google Scholar 

  • Whyte MP, Murphy WA, Fallon MD, Sly WS, Teitelbaum SL, McAlister WH, Avioli LV (1980) Osteopetrosis, renal tubular acidosis and basal ganglia calcification in three sisters. Am J Med 69: 64–74

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Venta, P.J. (2000). Inherited deficiencies and activity variants of the mammalian carbonic anhydrases. In: Chegwidden, W.R., Carter, N.D., Edwards, Y.H. (eds) The Carbonic Anhydrases. EXS 90, vol 90. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8446-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8446-4_19

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9570-5

  • Online ISBN: 978-3-0348-8446-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics