Skip to main content

From Anomaly to Explanation: The Continuous Beta Spectrum, 1929–1934

  • Chapter
Controversy and Consensus: Nuclear Beta Decay 1911–1934

Part of the book series: Science Networks · Historical Studies ((SNHS,volume 24))

Abstract

The year 1932 was a turning point in the history of nuclear physics. The neutron, the positron and the deuteron were discovered, and the first nuclear disintegrations with artificially accelerated protons were made.1 These events stimulated a dramatic increase in the number of publications and Ph.D. degrees awarded in nuclear physics, and the possibility for raising funds for nuclear research was much improved.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Chadwick, “Possible Existence of a Neutron,” Nature 129 (1932), 312; idem., “The Ex­istence of a Neutron,” Proc. Roy. Soc. A136 (1932), 692–708; C.D. Anderson, “The Apparent Existence of Easily Deflectable Positives,” Science 76 (1933), 238–239; idem., “The Positive Electron,” Phys. Rev. 43 (1933), 491–494; H.C. Urey, F.G. Brickwedde, and G.M. Murphy, “A Hydrogen Isotope of Mass 2,” Phys. Rev. 39 (1932), 164–165. The spectroscopic discovery of heavy hydrogen was first reported by Harold Urey at a meeting of the American Physical So­ciety at Tulane University, 28–30 December 1931. See also J.D. Cockcroft and E.T.S. Walton, “Disintegration of Lithium by Swift Protons,” Nature 129 (1932), 649.

    Google Scholar 

  2. C. Werner, “1932 – Moving into the New Physics,” Physics Today 25 (May 1972), 40–49.

    Google Scholar 

  3. For a historical account of Gamow’s theory of alpha decay, see R.H. Stuewer, “Gamow’s Theory of Alpha Decay,” in The Kaleidoscope of Science: The Israel Colloquium Studies in History, Philosophy, and Sociology of Science, E. Ullmann-Margalit (ed.) (Dordrecht: Reidel, 1986), pp. 147–186.

    Google Scholar 

  4. Bohr to Heisenberg, December 1928, BSC (11.2); the translation has been taken from BCW, Vol. 6, Foundations of Quantum Physics I (1926–1932), Jurgen Kalckar (ed.) (Amsterdam: North-Holland, 1985), pp. 24–25.

    Google Scholar 

  5. For a thorough discussion of the difficulties of the nuclear-electron hypothesis, and for references, see R.H. Stuewer, “The Nuclear Electron Hypothesis,” in Otto Hahn and the Rise of Nuclear Physics, W.R. Shea (ed.) (Dordrecht: Reidel, 1983), pp. 19–67.

    Google Scholar 

  6. For a historical account of Dirac’s relativistic theory of electrons, and for references, see H. Kragh, “The Genesis of Dirac’s Relativistic Theory of Electrons,” AHES 24 (1981), 31–67; idem, Dirac: A Scientific Biography (Cambridge University Press, 1990), pp. 48–66.

    Google Scholar 

  7. O. Klein, “Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac,” Z. Phys. 53 (1929), 157–165.

    Article  ADS  MATH  Google Scholar 

  8. E. Rutherford and J. Chadwick, “Energy Relations in Artificial Disintegration,” Proc. Camb. Phil. Soc. 25 (1928–1929), 186–192, p. 190.

    Google Scholar 

  9. Bohr to Fowler, 14 February 1929, BSC (10.3).

    Google Scholar 

  10. Heisenberg to Bohr, 20 December 1929, BSC (11.2).

    Google Scholar 

  11. W W Bothe and H. Fränz, “Atomtrümmer, reflektierte ce-Teilchen und durch es-Strahlen erregte Röntgenstrahlen,” Z. Phys. 49 (1928), 1–26; H. Pose, “Messungen von Atomtrümmern aus Aluminium, Beryllium, Eisen und Kohlenstoff nach der Rückwärtsmethode,” Z. Phys. 60 (1930), 156–167.

    Google Scholar 

  12. Bohr to Fowler, 14 February 1929, BSC (10.3).

    Google Scholar 

  13. N. Bohr, “,β-Ray Spectra and Energy Conservation,” Bohr MSS (12.1); the manuscript is reproduced in BCW, Vol. 9, Nuclear Physics (1929–1952), R.E. Peierls (ed.) (Amsterdam: North-Holland, 1986), pp. 85–89.

    Google Scholar 

  14. G.P. Thomson, “The Disintegration of Radium E from the Point of View of Wave Mechanics,” Nature 121 (1928), 615–616; idem., “On the Waves associated with 0-Rays, and the Relation between Free Electrons and their Waves,” Phil. Mag. 7 (1929), 405–417.

    Google Scholar 

  15. Thomson, “Disintegration” (note 14), p. 615.

    Google Scholar 

  16. Thomson, “Waves” (note 14), p. 413.

    Google Scholar 

  17. Ibid., p. 413.

    Google Scholar 

  18. Bohr, “β-Ray Spectra” (note 13), p. 87.

    Google Scholar 

  19. N. Bohr, H.A. Kramers, and J.C. Slater, “The Quantum Theory of Radiation,” Phil. Mag. 47 (1924), 785–802; reprinted in B.L. van der Waerden, Sources of Quantum Mechanics (New York: Dover Publications, 1968), pp. 159–176. For a historical account, see J. Hendry, “BohrKramers—Slater: A Virtual Theory of Virtual Oscillators and Its Role in the History of Quantum Mechanics,” Centaurus 25 (1981), 189–221; and M. Dresden, H.A. Kramers: Between Tradition and Revolution (New York: Springer-Verlag, 1987), pp. 41–56.

    Google Scholar 

  20. Rutherford to Bohr, 19 November 1929, BSC (15.3). Quoted in A. Pais, Inward Bound: of Matter and Forces in the Physical World (New York: Oxford University Press, 1986), p. 311.

    Google Scholar 

  21. Gamow to Meitner, 27 November 1929, MTNR 5/6.

    Google Scholar 

  22. Pais, Inward Bound (note 20), p. 312n.

    Google Scholar 

  23. Bohr to Kramers, 11 November 1926, AHQP (9.5).

    Google Scholar 

  24. Pauli to Weisskopf, 17 January 1957, AHQP (66.4).

    Google Scholar 

  25. Bohr, “β-Ray Spectra” (note 13), p. 88.

    Google Scholar 

  26. Ibid., p. 88.

    Google Scholar 

  27. Ibid., p. 88.

    Google Scholar 

  28. N. Bohr, “Das Wirkungsquantum,” unpublished manuscript, 1930, Bohr MSS (12.3), 75pp.

    Google Scholar 

  29. Pauli to Bohr, 17 July 1929, BSC (14.3). The original letter is reproduced in W. Pauli, Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Vol. 1: 1919–1929, A. Hermann, K.v. Meyenn, and V.F. Weisskopf (eds.) (New York: Springer Verlag, 1979), p. 512. The translation is from BCW, Vol. 6 (note 4), pp. 446–447.

    Google Scholar 

  30. Ibid., p. 447.

    Google Scholar 

  31. Bohr to Heisenberg, 8 December 1930, BSC (20.2).

    Google Scholar 

  32. Bohr to Dirac, 24 November 1929, BSC (9.4).

    Google Scholar 

  33. Dirac to Bohr, 26 November 1929, BSC (9.4).

    Google Scholar 

  34. Bohr to Dirac, 5 December 1929, BSC (9.4).

    Google Scholar 

  35. Ibid.

    Google Scholar 

  36. Ibid.

    Google Scholar 

  37. Pauli to Klein, 12 December 1930, in W. Pauli, Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Vol. 2: 1930–1939, K.v. Meyenn (ed.) (New York: Springer Verlag, 1985), p. 45.

    Google Scholar 

  38. Ibid., pp. 45–46.

    Google Scholar 

  39. Ibid., pp. 39–40.

    Google Scholar 

  40. Ibid., p. 34.

    Google Scholar 

  41. Ibid., p. 44.

    Google Scholar 

  42. Ibid., pp. 44–45.

    Google Scholar 

  43. Ibid., p. 51.

    Google Scholar 

  44. N. Bohr, “Atomic Stability and Conservation Laws,” in Atti del Convegno di Fisica Nucleare Ottobre 1931 (Rome: Reale Accademia d’Italia, 1932), pp. 119–130; idem., “Chemistry and the Quantum Theory of Atomic Constitution,” J. Chem. Soc. (1932), 349–384. Bohr delivered his Faraday Lecture to the Chemical Society on 8 May 1930.

    Google Scholar 

  45. J.F. Carlson and J. Robert Oppenheimer, “On the Range of Fast Electrons and Neutrons,” Phys. Rev. 38 (1931), 1787–1788. For a historical discussion of the neutrino hypothesis, see L.M. Brown, “The Idea of the Neutrino,” Physics Today 31 (September 1978), 23–28; K.v. Meyenn, “Pauli, das Neutrino und die Entdeckung des Neutrons vor 50 Jahren,” Naturwiss. 69 (1982), 564–573; and A.Q. Morton, The Neutrino and Nuclear Physics, 1930–1940 (Ph.D. thesis, University of London, 1982). I am grateful to Alan Q. Morton for having lent me a copy of his thesis.

    Google Scholar 

  46. Schrödinger to Bohr, 29 April 1931, BSC (25.3).

    Google Scholar 

  47. Bohr to Schrödinger, 8 May 1931, BSC (25.3).

    Google Scholar 

  48. S. Goudsmit, “Present Difficulties in the Theory of Hyperfine Structure,” in Atti (note 44), pp. 33–49, on p. 49.

    Google Scholar 

  49. R.W. Gurney and E.U. Condon, “Wave Mechanics and Radioactive Disintegration,” Nature 122 (1928), 439; idem., “Quantum Mechanics and Radioactive Disintegration,” Phys. Rev. 33 (1929), 127–140. For a brief discussion of this work, see Stuewer, “Gamow’s Theory” (note 3).

    Google Scholar 

  50. E.U. Condon, “Tunneling — How It All Started,” Am. J. Phys. 46 (1978), 319–323, p. 320.

    Article  ADS  Google Scholar 

  51. Schrödinger to Bohr, 18 January 1929, BSC (16.2).

    Google Scholar 

  52. Ibid.

    Google Scholar 

  53. Schrödinger to Bohr, 25 September 1930, BSC (25.3).

    Google Scholar 

  54. J. Kudar, “Der wellenmechanische Character des ß-Zerfalls,” Z. Phys. 57 (1929), 257–260; “… II,” ibid. 60 (1930), 168–175; “… III,” ibid. 60 (1930), 176–180; “… IV,” ibid. 60 (1930), 686–689; idem., “Die β-Strahlung und das Energieprinzip,” ibid. 64 (1930), 402–404; idem., “Eigenschaften der Kernelektronen,” Phys. Zeit. 32 (1931), 34–37.

    Google Scholar 

  55. The Geiger-Nuttall relation for alpha rays, known phenomenologically since 1912, established a connection between the life-time of an alpha-emitting source and the range (or energy) of the emitted alpha particles.

    Google Scholar 

  56. Kudar, “Wellenmechanische… II” (note 54), p. 174.

    Google Scholar 

  57. Bohr to Kudar, 28 January 1930, BSC (22.4).

    Google Scholar 

  58. E. Rutherford, J. Chadwick, and C.D. Ellis, Radiations from Radioactive Substances (Cambridge University Press, 1930), p. 336.

    MATH  Google Scholar 

  59. Ibid., p. 409.

    Google Scholar 

  60. Ibid., p. 410.

    Google Scholar 

  61. L. Bastings, “The Decay of Radium E,” Phil. Mag. 48 (1924), 1075–1080, p. 1078.

    Google Scholar 

  62. Fowler to Bohr, 6 October 1929, BSC (10.3).

    Google Scholar 

  63. Ellis to Bohr, 2 September 1932, BSC (19.1).

    Google Scholar 

  64. G.I. Pokrowski, “über das Wahrscheinlichkeitsgesetz bei dem Zerfall radioaktiver Stoffe sehr kleiner Konzentration,” Z. Phys. 58 (1929), 706–709.

    Article  ADS  MATH  Google Scholar 

  65. Dirac to Bohr, 9 December 1929, BSC (9.4).

    Google Scholar 

  66. L.B. Loeb, “Note Concerning the Emission of Beta-Rays in Radioactive Change,” Phys. Rev. 34 (1929), 1212–1216.

    Article  ADS  Google Scholar 

  67. F.G. Houtermans, “Neuere Arbeiten über Quantentheorie des Atomkerns,” Ergebnisse der Exakten Naturwissenschaften 9 (1930), 123–221, p. 181.

    Article  Google Scholar 

  68. See Pauli’s letter to the “radioactive ladies and gentlemen,” 4 December 1930, Pauli, Briefwechsel, Vol. 2 (note 37), pp. 39–40.

    Google Scholar 

  69. Ellis to Bohr, 2 September 1932, BSC (19.1).

    Google Scholar 

  70. E. Madgwick, “The β-Ray Spectrum of RaE,” Proc. Camb. Phil. Soc. 23 (1927), 982–984; R.W. Gurney, “The Number of Particles in the Beta-Ray Spectra of Radium B and Radium C,” Proc. Roy. Soc. A109 (1925), 540–561.

    Google Scholar 

  71. J.A. Chalmers, “An Approximate Method of Determining the High-Velocity Limits of Continuous 0-Ray Spectra,” Proc. Camb. Phil. Soc. 25 (1929), 331–339.

    Article  ADS  Google Scholar 

  72. Ibid., pp. 337–338.

    Google Scholar 

  73. B.W. Sargent, “The Upper Limits of Energy in the 0-ray Spectra of Actinium B and Actinium C”,” Proc. Camb. Phil. Soc. 25 (1929), 514–521; N. Feather; “Concerning the Absorption Method of Investigating β-Particles of High Energy: The Maximum Energy of the Primary,β-Particles of Mesothorium 2,” Phys. Rev. 35 (1930), 1559–1567; idem., “Concerning the Success of the Absorption Method of Investigating the High Velocity Limits of Continuous β Ray Spectra,” Proc. Camb. Phil. Soc. 27 (1931), 430–444.

    Google Scholar 

  74. F.R. Terroux, “The Upper Limit of Energy in the Spectrum of Radium E,” Proc. Roy. Soc. A131 (1931), 90–99.

    ADS  Google Scholar 

  75. Meitner to Blackett, 19 December 1931, MTNR 5/1.

    Google Scholar 

  76. Blackett to Meitner, 8 January 1932, MTNR 5/1.

    Google Scholar 

  77. F.C. Champion, “The Distribution of Energy in the β-Ray Spectrum of Radium E,” Proc. Roy. Soc. A134 (1931), 672–681; K.C. Wang, “Uber die obere Grenze des kontinuierlichen β-Strahlspektrums von RaE,” Z. Phys. 74 (1932), 744–747.

    Google Scholar 

  78. Champion, “Distribution” (note 77), p. 679.

    Google Scholar 

  79. F.R. Terroux and N.S. Alexander, “The Upper Limit of Energy in the,β-Ray Spectrum,” Proc. Carob. Phil. Soc. 28 (1932), 115–120.

    Article  ADS  Google Scholar 

  80. Ellis to Bohr, 2 September 1932, BSC (19.1).

    Google Scholar 

  81. B.W. Sargent, “Energy Distribution Curves of the Disintegration Electrons,” Proc. Camb. Phil. Soc. 28 (1932), 538–553; idem., “The Maximum Energy of the,3-Rays from Uranium X and Other Bodies,” Proc. Roy. Soc. A139 (1933), 659–673.

    Google Scholar 

  82. “At present the significance… is not apparent,” Sargent wrote in ibid., p. 672.

    Google Scholar 

  83. Rutherford and Chadwick, “Energy Relations” (note 8), p. 192.

    Google Scholar 

  84. C.D. Ellis and N.F. Mott, “Energy Relations in the β-Ray Type of Radioactive Disintegration,” Proc. Roy. Soc. A141 (1933), 502–511.

    ADS  Google Scholar 

  85. Ibid., p. 502.

    Google Scholar 

  86. C.D. Ellis and N.F. Mott, “The Internal Conversion of the γ-Rays and Nuclear Level Systems of the Thorium B and C Bodies,” Proc. Roy. Soc. A139 (1933), 369–379.

    ADS  Google Scholar 

  87. W.J. Henderson, “The Upper Limits of the Continuous β-Ray Spectra of Thorium C and C”,” Proc. Roy. Soc. A14/7 (1934), 572–582.

    ADS  Google Scholar 

  88. Chadwick, “Possible Existence” (note 1).

    Google Scholar 

  89. For a full discussion of these problems, see Stuewer, “Nuclear Electron Hypothesis” (note 5).

    Google Scholar 

  90. W Heisenberg, “über den Bau der Atomkerne. I,” Z. Phys. 77 (1932), 1–11; “… II,” ibid. 78 (1932), 156–164; “… III,” ibid. 80 (1932), 587–596.

    Google Scholar 

  91. Bohr to Klein, 28 June 1932, BSC (22.1). The translation is my own.

    Google Scholar 

  92. Anderson, “Apparent Existence” (note 1). See also X. Roqué, “The Manufacture of the Positron,” Studies in the History and Philosophy of Modern Physics 28 (1997), 73–129.

    Google Scholar 

  93. Bohr to Klein, 7 April 1933, BSC (22.1). The translation has been taken from F. Aaserud, Redirecting Science: Niels Bohr, Philanthropy, and the Rise of Nuclear Physics (Cambridge University Press, 1990), p. 58.

    Google Scholar 

  94. Pauli to Peierls, 22 May 1933, in Pauli, Briefwechsel, Vol. 2 (note 37), p. 164.

    Google Scholar 

  95. This appears from a letter of Bohr to Ellis, 30 August 1933, BSC (19.1).

    Google Scholar 

  96. Pauli to Peierls, 22 May 1933 (note 94).

    Google Scholar 

  97. L. Meitner and K. Philipp, “über die Wechselwirkung zwischen Neutronen und Atomkernen,” Naturwiss. 20 (1932), 929–932; idem., “Die bei Neutronenanregung auftretenden Elektronenbahnen,” Naturwiss. 21 (1933), 286–287.

    Google Scholar 

  98. Pauli, Briefwechsel, Vol. 2 (note 37), pp. 158–159. The letter is reproduced in Pauli’s original English.

    Google Scholar 

  99. Pauli to Peierls, 22 May 1933 (note 94).

    Google Scholar 

  100. W M. Elsasser, “A Possible Property of the Positive Electron,” Nature 131 (1933), 764. See also H. Stücklen, “Kältephysik und Physik des Atomkerns,” Naturwiss. 21 (1933), 772–776, p. 776.

    Google Scholar 

  101. O.R. Frisch and O. Stern, “Über die magnetische Ablenkung von Wasserstoffmolekülen und das magnetische Moment des Protons. I,” Z. Phys. 85 (1933), 4–16; 0. Stern, “über das magnetische Moment des Protons,” Helv. Phys. Acta 6 (1933), 426–427.

    Google Scholar 

  102. pauli, Briefwechsel, Vol. 2 (note 37), p. 184.

    Google Scholar 

  103. Heisenberg to Pauli, 17 July 1933; in ibid., p. 195.

    Google Scholar 

  104. W Heisenberg, “Considérations théoriques générales sur la structure du noyau,” in Structure et Propriétés des Noyaux Atomiques. Rapports et Discussions du Septième Conseil de Physique tenu a Bruxelles du 22 au 29 Octobre 1933 (Paris: Gauthier-Villars, 1934), pp. 289–344.

    Google Scholar 

  105. Meitner to Heisenberg, 18 November 1933, MTNR 5/8.

    Google Scholar 

  106. Heisenberg to Meitner, 28 November 1933, MTNR 5/8.

    Google Scholar 

  107. This work resulted in a substantial paper, co-authored with Léon Rosenfeld; see N. Bohr and L. Rosenfeld, “Zur Frage der Messbarkeit der elektromagnetischen Feldgrössen,” Det Kongelige Danske Videnskabernes Selskab. Mathematisk—fysiske Meddelelser 12 (8, 1933), 65pp. Reproduced, in original German and English translation, in BCW, Vol. 7, Foundations of Quantum Physics II (1933–1958), Jprgen Kalckar (ed.) (Amsterdam: Elsevier, 1996), pp. 59–121, 123–166.

    Google Scholar 

  108. Gamow to Bohr, 31 December 1932, BSC (19.4). The translation is taken from BCW, Vol. 9 (note 13), p. 569; the drawing is from the original letter.

    Google Scholar 

  109. Bohr to Gamow, 21 January 1933, BSC (19.4). The translation is taken from BCW, Vol. 9 (note 13), p. 571.

    Google Scholar 

  110. N. Bohr, “Sur la méthode de correspondance dans la théorie de l’électron,” in Structure (note 104), pp. 216–228. Quoted from the English translation in BCW, Vol. 9 (note 13), p. 132.

    Google Scholar 

  111. Gamow to Goudsmit, 8 March 1934, Goudsmit Scientific Correspondence. Microfilm copies are deposited in the Niels Bohr Library, American Institute of Physics, College Park, Maryland. The letter is quoted from Exploring the History of Nuclear Physics, C. Weiner (ed.) (New York: American Institute of Physics, 1972), p. 180.

    Google Scholar 

  112. Bohr to Pauli, 15 March 1934, in Pauli, Briefwechsel, Vol. 2 (note 37), p. 308. The translation is my own.

    Google Scholar 

  113. G. Beck and K. Sitte, “Zur Theorie des ß-Zerfalls,” Z. Phys. 86 (1933), 105–119; G. Beck, “Hat das negative Energiespektrum einen Einfluss auf Kernphänomene?” Z. Phys. 83 (1933), 498–511; K. Sitte, “Zur Theorie des /3-Zerfalls,” Phys. Zeit. 34 (1933), 627–630; G. Beck, “Conservation Laws and 0-Emission,” Nature 132 (1933), p. 967.

    Google Scholar 

  114. lnterview with Beck, 22 April 1967, Niels Bohr Library, American Institute of Physics, College Park, Maryland, p. 30. I am grateful to Spencer R. Weart for permission to quote from this interview.

    Google Scholar 

  115. Bohr to Ellis, 30 August 1933, BSC (19.1).

    Google Scholar 

  116. See F.R.D. Rasetti’s introduction to the published edition of Fermi’s original papers on [3.- decay, in E. Fermi, Collected Papers, Vol. 1, E. Segrè et al. (eds.) (Chicago: University of Chicago Press, 1962), pp. 538–540

    Google Scholar 

  117. E. Fermi, `Tentativo di una theoria dell’emissione dei raggi `beta’,” Ricerca Scientifica 4 (1933), 491–495; idem., “Tentativo di una theoria dei raggi 0,” Nuovo Cimento 11 (1934), 1–19; idem., “Versuch einer Theorie der β-Strahlen. I,” Z. Phys. 88 (1934), 161–177.

    Google Scholar 

  118. Bloch to Bohr, 10 February 1934, BSC (17.3).

    Google Scholar 

  119. Bohr to Bloch, 17 February 1934, BSC (17.3). The translation is from Aaserud, Redirecting Science (note 93), p. 65.

    Google Scholar 

  120. G. Gamow, “General Stability-Problems of Atomic Nuclei,” in International Conference on Physics, London 1934, Papers and Discussions, Vol. I: Nuclear Physics (London: The Physical Society and Cambridge University Press, 1935), pp. 60–66, on p. 63.

    Google Scholar 

  121. G. Beck, “Report on Theoretical Considerations Concerning Radioactive β-Decay,” in ibid., p. 39.

    Google Scholar 

  122. Ibid., p. 37.

    Google Scholar 

  123. Beck referred here to Meitner. At the October Conference in Copenhagen, she had informed him that at least in the RaE spectrum almost no electrons with energies less than 50 keV appeared, and that seemed to be in disagreement with Fermi’s theory. See G. Beck, “Bemerkung zur Arbeit von E. Fermi: ‘Versuch einer Theorie der β-Strahlen’,” Z. Phys. 89 (1934), 259–260, p. 259n. See also E. Fermi, “Zur Bemerkung von G. Beck and K. Sitte,” Z. Phys. 89 (1934), 522.

    Google Scholar 

  124. lnterview with Beck (note 114), pp. 31–32.

    Google Scholar 

  125. pauli to Heisenberg, 7 January 1934, in Pauli, Briefwechsel, Vol. 2 (note 37), p. 248.

    Google Scholar 

  126. Heisenberg to Pauli, 12 January 1934, ibid., p. 249.

    Google Scholar 

  127. H.A. Bethe and R.F. Bacher, “Nuclear Physics A: Stationary States of Nuclei,” Rev. Mod. Phys. 8 (1936), 82–229; H.A. Bethe, “Nuclear Physics B: Nuclear Dynamics, Theoretical,” ibid. 9 (1937), 69–224.

    Google Scholar 

  128. L.M. Brown and H. Rechenberg, “Field Theories of Nuclear Forces in the 1930s: The Fermi—Field Theory,” presented at a conference on The History of Modern Gauge Theories, July 1926, 1987, at Utah State University, Logan; idem., “Nuclear Structure and Beta-Decay (1932–1933),” Am. J. Phys. 56 (1988), 982–988; idem., The Origin of the Concept of Nuclear Forces (Bristol and Philadelphia: Institute of Physics, 1996). For a discussion of the Fermi theory in its first decade, see also A.D. Franklin, “Experiment and the Development of the Theory of Weak Interactions: Fermi’s Theory,” PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1986, Vol. 2 (1987), 163–179. I am grateful to Laurie M. Brown and Allan D. Franklin for having sent me preprints of their papers.

    Google Scholar 

  129. n fact, it took quite a long time before Bohr yielded completely to energy conservation in nuclear processes. Only in the summer of 1936 did he state publicly his full support of the principle. See N. Bohr, “Conservation Laws in Quantum Theory,” Nature 138 (1936), 25–26.

    Google Scholar 

  130. Pauli refers here to his lecture at the Zürcher Naturforschende Gesellschaft on 21 January 1957; see C.S. Wu, “The Neutrino,” in Theoretical Physics in the Twentieth Century: A Memorial Volume to Wolfgang Pauli, M. Fierz and V.F. Weisskopf (eds.) (New York: Interscience, 1960), pp. 249–303, on p. 301.

    Google Scholar 

  131. Pauli to Weisskopf, 17 January 1957, AHQP (66.4).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Jensen, C., Aaserud, F., Kragh, H., Rüdinger, E., Stuewer, R.H. (2000). From Anomaly to Explanation: The Continuous Beta Spectrum, 1929–1934. In: Aaserud, F., Kragh, H., Rüdinger, E., Stuewer, R.H. (eds) Controversy and Consensus: Nuclear Beta Decay 1911–1934. Science Networks · Historical Studies, vol 24. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8444-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8444-0_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9569-9

  • Online ISBN: 978-3-0348-8444-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics