Skip to main content

The Complexity of Yamnitsky and Levin’s Simplices Algorithm

  • Chapter
Polytopes — Combinatorics and Computation

Part of the book series: DMV Seminar ((OWS,volume 29))

  • 1148 Accesses

Abstract

In 1982 Yamnitsky and Levin gave a variant of the ellipsoid method which uses simplices instead of ellipsoids. Unlike the ellipsoid method this simplices method can be implemented in rational arithmetic. We show, however, that this results in a non-polynomial method since the storage requirement may grow exponentially with the size of the input. Nevertheless, by introducing a rounding procedure we can guarantee polynomiality for both a central-cut and a shallow-cut version. Thus in most applications the simplices method can serve as a substitute for the ellipsoid method. In particular, it performs better than the ellipsoid method if it is used to obtain bounds for the volume of a convex body. Furthermore, it can be used to estimate the optimal function value of total approximation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. AkgülOn Yamnitsky-Levin algorithmCah. Cent. Etud. Rech. Oper. 26 (1984), 179–194.

    MATH  Google Scholar 

  2. I. Barany and Z. FürediComputing the volume is difficultDiscrete Comput. Geom. 2 (1987), 319–326.

    MathSciNet  MATH  Google Scholar 

  3. S.G. BartelsTotale ApproximationsproblemeWissenschaft und Technik Verlag, Berlin 1995.

    Google Scholar 

  4. U. Betke and M. HenkApproximating the volume of convex bodiesDiscrete Comput. Geom. 10 (1993), 15–21.

    MathSciNet  MATH  Google Scholar 

  5. R.G. Bland, D. Goldfarb and M.J. ToddThe ellipsoid method: a surveyOper. Res. 29 (1981), 1039–1091.

    MathSciNet  MATH  Google Scholar 

  6. V. ChvátalLinear ProgrammingFreeman Press, New York, 1983.

    MATH  Google Scholar 

  7. M. Dyer, A. Frieze and R. Kannan, Arandom polynomial-time algorithm for approximating the volume of convex bodiesJ. Assoc. Comput. Mach. 38 (1991), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  8. U. Faigle, M. Hunting and W. KernOn a variant of the ellipsoid method: using simplices instead of ellipsoidsextended abstract for the SOR conference 1995 in Passau.

    Google Scholar 

  9. M. Grötschel, L. Lovász and A. SchrijverGeometric Algorithms and Combinatorial OptimizationSpringer-Verlag, Berlin 1988; 2nd edition, 1993.

    Google Scholar 

  10. R. Horst and H. TuyGlobal OptimizationSpringer-Verlag, Berlin, 1990.

    MATH  Google Scholar 

  11. L.G. Khachian, Apolynomial algorithm in linear programmingSoy. Math. Dokl. 20 (1979), 191–194.

    Google Scholar 

  12. V. KleeFacet centroids and volume minimizationStudia Sci. Math. Hungar. 21 (1986), 143–147.

    MathSciNet  MATH  Google Scholar 

  13. J.C. Lagarias and G.M. ZieglerBounds for lattice polytopes containing a fixed number of interior points in a sublatticeCan. J. Math. 43 (1991), 1022–1035.

    MathSciNet  MATH  Google Scholar 

  14. L. Lovász and M. SimonovitsRandom walks in a convex body and an improved volume algorithmRandom Struct. Algorithms 4 (1993), 359–412.

    MATH  Google Scholar 

  15. M.R. Osbourne and G.A. Watson, Ananalysis of the total approximation problem in separable norms and an algorithm for the total l 1-problem SIAM J. Sci. Stat. Comp. 6 (1985), 410–425.

    Article  Google Scholar 

  16. M. PadbergLinear Optimization and ExtensionsSpringer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

  17. R. Prakash and K.J. SupowitIncreasing the rate of convergence of Yamnitsky and Levin’s algorithmWorking Paper Ohio State University, 1991.

    Google Scholar 

  18. R.T. RockafellarConvex AnalysisPrinceton University Press, 1970.

    Google Scholar 

  19. H. Späth and G.A. WatsonOn orthogonal linear L i -approximationNumer. Math. 52 (1987), 531–543.

    Google Scholar 

  20. S. Van Huffel and J. VandewalleThe Total Least Squares ProblemSIAM Frontiers in Applied Mathematics 9, 1991.

    Google Scholar 

  21. G.A. WatsonThe total approximation problemin: Approximation Theory IV (C.K. Chui, L.L. Schumaker, J.D. Ward, eds.), Academic Press, New York, 1983, 723–728.

    Google Scholar 

  22. B. Yamnitsky and L.A. Levin, Anold linear programming algorithm runs in polynomial timein: 23rd Annual Symposium on Foundations of Computer Science, IEEE, New York, 1982, 327–328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Bartels, S.G. (2000). The Complexity of Yamnitsky and Levin’s Simplices Algorithm. In: Kalai, G., Ziegler, G.M. (eds) Polytopes — Combinatorics and Computation. DMV Seminar, vol 29. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8438-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8438-9_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6351-2

  • Online ISBN: 978-3-0348-8438-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics