Skip to main content

On the Bergman metric near a plurisubharmonic barrier point

  • Conference paper
Complex Analysis and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 188))

Abstract

For a bounded domain Ω ⊂ ℂn we denote by A 2(Ω) the Hilbert space of all holomorphic functions that are square-integrable with respect to the Lebesgue measure. The norm of a function fA 2(Ω) is denoted by \( \parallel f\parallel \Omega \). We write the Bergman kernel function of Ω as K Ω (z; w), for z, w∈Ω.Then it is well-known that

$$ {k_\Omega }\left( z \right): = {k_\Omega }\left( {z:z} \right) = \mathop {\max }\limits_{f \in {A_2}\left( \Omega \right),\parallel f\parallel \Omega \leqslant 1} {\left| {f\left( z \right)} \right|^2} $$
(1)

and the Bergman metric of Ω is given by

$$ B_\Omega ^2\left( {z;Y} \right) = \frac{{b_\Omega ^2\left( {z;Y} \right)}}{{{k_\Omega }\left( z \right)}},\left( {z,Y} \right) \in \Omega \times {\mathbb{C}^n} $$

where

$$ {b_\Omega }\left( {z;Y} \right) = \max \left\{ {\left| {\left\langle {\partial f\left( z \right),Y} \right\rangle } \right|\left| {f \in {A_2}\left( \Omega \right),{{\left\| f \right\|}_\Omega } = 1,f\left( z \right) = 0} \right.} \right\} $$
(2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande, J. Reine und Angew. Math. 172 (1934), 89–123.

    Google Scholar 

  2. D. Catlin, Estimation of invariant metrics on pseudoconvex domains of dimen-sion two, Math. Z. 200 (1989), 429–466.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Catlin, Subelliptic estimates for the ∂-Neumann problem on pseudoconvex domains, Ann. of Math. 126 (1987), 131–191.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Cho, Estimates of invariant metrics on some pseudoconvex domains in ℂn, J. Korean Math. Soc. 32 (1995), 661–678.

    MathSciNet  MATH  Google Scholar 

  5. K. Diederich, Über die 1. und 2. Ableitungen der Bergmanschen Kernfunktion und ihr Randverhalten, Math. Ann. 203 (1973), 129–170.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Diederich and J.E. Fornaess, Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions, Inv. Math. 39 (1977), 129–141

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Diederich and J.E. Fornaess, Pseudoconvex domains: Existence of Stein neighborhoods, Duke Math. J. 44 (1977), 641–662.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Diederich, J.E. Fornaess, and G. Herbort, Boundary behavior of the Bergman metric, Proc. Symp. Pure Math. 41 (1984), 59–67.

    MathSciNet  Google Scholar 

  9. K. Diederich and T. Ohsawa, An estimate for the Bergman distance on pseu-doconvex domains, Ann. of Math. 141 (1995), 181–190.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Herbort, On the invariant differential metrics near pseudoconvex boundary points where the Levi form has corank one, Nagoya Math. Journal 130(1993) 25–54 and: Nagoya Math. J. 135 (1994), 149–152.

    Google Scholar 

  11. G. Herbort, Invariant metrics and peak functions on pseudoconvex domains of homogeneous finite diagonal type, Math. Z. 209 (1992), 223–243.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Hormander,L2_estimates and existence theorems for the ∂ operator,Acta Math. 113 (1965), 89–152.

    Article  MathSciNet  Google Scholar 

  13. J. Mc Neal, Lower bounds on the Bergman metric near a point of finite type, Ann. of Math. 136 (1992), 336–360.

    Article  MathSciNet  Google Scholar 

  14. T. Ohsawa, and K. Takegoshi, Extension of L 2 holomorphic functions, Math. Z. 195 (1987), 197–204.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Ohsawa, Extension of L 2 holomorphic functions III: Negligible weights, Math. Z. 219 (1995), 215–225.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Sibony, Une classe des domaines pseudoconvexes, Duke Math. J. 55 (1987), 299–319.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Herbort, G. (2000). On the Bergman metric near a plurisubharmonic barrier point. In: Dolbeault, P., Iordan, A., Henkin, G., Skoda, H., Trépreau, JM. (eds) Complex Analysis and Geometry. Progress in Mathematics, vol 188. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8436-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8436-5_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9566-8

  • Online ISBN: 978-3-0348-8436-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics