Skip to main content

Generating functions with high-order poles are nearly polynomial

  • Conference paper
Mathematics and Computer Science

Part of the book series: Trends in Mathematics ((TM))

Abstract

Consider the problem of obtaining asymptotic information about a multidimensional arrayof numbers ar, given the generating function\( F\left( z \right) = \sum\nolimits_{r} {{{a}_{r}}} {{z}^{r}} \) When F is meromorphic, it is known how to obtain various asymptotic series for a r in decreasing powers of \( \left| r \right|\).The purpose of this note is to show thatwhen the pole set of F has singularities of a certain kindthen there can be only finitely many terms in such an asymptotic series. As a consequence, in the presence of a singularity of this kind, the whole asymptotic series for ar, is an effectively computable object.

Research supported in part by National Science Foundation grant # DMS 9803249

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender, E. and Richmond, L. B. (1983). Central and local limit theofems applied to asymptotic enumeration II: multivariate generating functions. JCT A 34 255–265.

    MathSciNet  Google Scholar 

  2. Campanino, M., Chayes, J.T. and Chayes, L. (1991). Gaussian fluctuations in the subcritical regime of percolation. Prob. Th. Rel. Fields 88 269–341.

    Article  MathSciNet  MATH  Google Scholar 

  3. Chayes, J. T. and Chayes, L. (1986). Ornstein-Zernike behavior for self-avoiding walks at all non-critical temperatures. Comm. Math. Phys. 105 221–238.

    Article  MathSciNet  Google Scholar 

  4. Chyzak, F. and Salvy, B. (1998). Non-commutative elimina-tion in Ore Algebras proves multivariate identities. J. Symbol. Comput 26 187–227.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohn, H., Elkies, N. and Propp, J. (1996). Local statistics for random domino tilings of the Aztec diamond. Duke Math. J 1985 117–166.

    Article  MathSciNet  Google Scholar 

  6. Cohn, H. and Pemantle, R. (2000) A determination of the boundary of the region of fixation for some domino tiling ensembles. In Preparation.

    Google Scholar 

  7. Flajolet, P. and Odlyzko, A. (1990). Singularity analysis of generating functions. SIAM J. Disc. Math 3 216–240.

    Article  MathSciNet  MATH  Google Scholar 

  8. Flajolet, P. and Sedgewick, R. (2000). The average case anal-ysis of algorithms. Book Preprint.

    Google Scholar 

  9. Furstenberg, H. (1967). Algebraic functions over finite fields.J. Algebra 7 271–277.

    Article  MathSciNet  MATH  Google Scholar 

  10. Grauert, H. and Remmert, R. (1979). Theory of Stein spaces ranslated from the German by Alan Huckleberry. Grundlehren der Mathematischen Wissenschaften 236. Springer-Verlag: Berlin.

    Google Scholar 

  11. Gunning, R. and Rossi, H. (1965). Analytic functions of several complex variables. Prentice-Hall: Englewood Cliffs, NJ.

    MATH  Google Scholar 

  12. Hautus, M. and Klarner, D. (1971). The diagonal of a double power series. Duke Math. J 23 613–628.

    MathSciNet  MATH  Google Scholar 

  13. Leykin, A. and Tsai, H. (2000). D-modules library for acaulay 2. Available at http://www.math.umn.edu/leykin/leykin

    Google Scholar 

  14. Lipshitz, L. (1988). The diagonal of a D-finite power series is D-finite. J. Algebra 113 373–378.

    Article  MathSciNet  MATH  Google Scholar 

  15. Pemantle, R. and Wilson, M. (2000a). Asymptotics for multivariate sequences, part I: smooth points of the singular variety. In preparation.

    Google Scholar 

  16. Pemantle, R. and Wilson, M. (2000b). Asymptotics for multivariate sequences, part II: multiple points. In preparation.

    Google Scholar 

  17. Pemantle, R. and Wilson, M. (2000c). Asymptotics for multivariate sequences, part III. In preparation.

    Google Scholar 

  18. Stanley, R. (1999). Enumerative combinatorics, vol. 2. Cambridge Studies in Advanced Mathematics no. 62. Cambridge University Press: Cambridge.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Pemantle, R. (2000). Generating functions with high-order poles are nearly polynomial. In: Gardy, D., Mokkadem, A. (eds) Mathematics and Computer Science. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8405-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8405-1_26

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9553-8

  • Online ISBN: 978-3-0348-8405-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics