Skip to main content

A new proof of Yaglom’s exponential limit law

  • Conference paper
Mathematics and Computer Science

Part of the book series: Trends in Mathematics ((TM))

Abstract

Let (Zn)n≥0 be a critical Galton-Watson branching process with finite variance. We give a new proof of a classical result by Yaglom that Z n conditioned on Zn > 0 has an exponential lirnit law.

Research supported by Deutsche Forschungsgemeinschaft

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athreya, K. B. and Ney, P. (1972) Branching Processes, Springer, New York.

    Book  MATH  Google Scholar 

  2. Bickel, P. J. and Freedman, D. A. (1981) Some asymptotic theory for the bootstrap, Ann. Statist. 9, 1196–1217.

    Article  MathSciNet  MATH  Google Scholar 

  3. Fleischmann, K. and Siegmund-Schultze, R. (1977) The structure of reduced critical Galton-Watson processes, Math. Nachr. 79, 233–241.

    Article  MathSciNet  Google Scholar 

  4. Geiger, J. (1999) Elementary new proofs of classical limit theorems for GaltonWatson processes, J. Appl. Prob. 36, 301–309.

    Article  MathSciNet  MATH  Google Scholar 

  5. Kesten, H., Ney, P. and Spitzer, F. (1966) The Galton-Watson process with mean one and finite variance, Theory Prob. Appl. 11, 513–540.

    Article  MathSciNet  Google Scholar 

  6. Kotz, S. and Steutel, F. W. (1988) Note on a characterization of exponential distributions, Stat. Prob. Lett. 6, 201–203.

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, Q. (1998) Fixed points of a generalized smoothing transformation and applications to the branching random walk, Adv. Appl. Prob. 30, 85–112.

    Article  MATH  Google Scholar 

  8. Lyons, R., Pemantle, R. and Peres, Y. (1995) Conceptual proofs of L log L criteria for mean behavior of branching processes, Ann. Prob. 25, 1125–1138.

    Article  MathSciNet  Google Scholar 

  9. Rachev, S. T. and Rüschendorf, L. (1995) Probability metrics and recursive algorithms, Adv. Appl. Prob. 27, 770–799.

    Article  MATH  Google Scholar 

  10. Rösler, U. (1991) A limit theorem for ”Quicksort”, Inform. Theor. Appl. 25, 85–100.

    MATH  Google Scholar 

  11. Rösler, U. (1992) A fixed point theorem for distributions, Stoch. Proc. Appl. 37, 195–214.

    Article  Google Scholar 

  12. Yaglom, A. M. (1947) Certain limit theorems of the theory of branching processes, Dokl. Acad. Nauk. SSSR 56, 795–798.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Geiger, J. (2000). A new proof of Yaglom’s exponential limit law. In: Gardy, D., Mokkadem, A. (eds) Mathematics and Computer Science. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8405-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8405-1_21

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9553-8

  • Online ISBN: 978-3-0348-8405-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics