Skip to main content

Alterations and Resolution of Singularities

  • Chapter
Resolution of Singularities

Part of the book series: Progress in Mathematics ((PM,volume 181))

Abstract

On July 26, 1995, at the University of California, Santa Cruz, a young Dutch mathematician by the name Aise Johan de Jong made a revolution in the study of the arithmetic, geometry and cohomology theory of varieties in positive or mixed characteristic. The talk he delivered, first in a series of three entitled “Dominating Varieties by Smooth Varieties”, had a central theme: a systematic application of fibrations by nodal curves. Among the hundreds of awe-struck members of the audience, participants of the American Mathematical Society Summer Research Institute on Algebraic Geometry, many recognized the great potential of Johan de Jong’s ideas even for complex algebraic varieties, and indeed soon more results along these lines began to form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. J. de Jong, Smoothness, semistability, and alterations, Publications Mathématiques I.H.E.S. 83, 1996, pp. 51–93.

    Article  MATH  Google Scholar 

  2. D. Mumford, J. Fogarty and F. KirwanGeometric invariant theory Springer, Berlin, 1994

    Book  Google Scholar 

  3. R. Hartshorne, Algebraic geometry. Springer, New York, 1977.

    MATH  Google Scholar 

  4. D. Mumford, The red book of varieties and schemes. Lecture Notes in Math., 1358, Springer, Berlin, 1988.

    Google Scholar 

  5. A. Grothendieck (with M. Raynaud and D. S. Rim), Groupes de monodromie en géométrie algébrique I. (Séminaire de géométrie algébrique du Bois-Marie.) Lecture Notes in Math., 288, Springer, Berlin, 1972.

    Google Scholar 

  6. D. Abramovich, A high fibered power of a family of varieties of general type dominates a variety of general type, Invent. Math. 128 (1997), no. 3, 481–494.

    MathSciNet  MATH  Google Scholar 

  7. D. Abramovich and A. J. de Jong, Smoothness, semistability and toroidal geometry, J. Algebraic Geom. 6 (1997), no. 4, 789–801.

    Google Scholar 

  8. D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0, preprint. alg-geom/9707012.

    Google Scholar 

  9. D. Abramovich and J. Wang, Equivariant resolution of singularities in characteristic 0, Math. Res. Lett. 4 (1997), no. 2–3, 427–433.

    MathSciNet  MATH  Google Scholar 

  10. A. Altman and S. Kleiman, Introduction to Grothendieck duality theory. Lecture Notes in Math., 146, Springer, Berlin, 1970.

    Google Scholar 

  11. M. Artin, Versal deformations and algebraic stacks,Invent. Math. 27 (1974), 165–189.

    Google Scholar 

  12. M. Artin and G. Winters, Degenerate fibres and reduction of curves. Topology 10 (1971), 373–383.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Asada, M. Matsumoto and T. Oda, Local monodromy on the fundamental groups of algebraic curves along a degenerated stable curve. Journ. Pure Appl. Algebra 103 (1995), no. 3, 235–283.

    MathSciNet  MATH  Google Scholar 

  14. K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), no. 1, 1–60.

    MathSciNet  MATH  Google Scholar 

  15. P. Berthelot, Altérations de variétés algébriques (d’après A. J. de Jong),Astérisque No. 241 (1997), Exp. No. 815, 5, 273–311.

    Google Scholar 

  16. E. Bierstone and P. D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302.

    MathSciNet  MATH  Google Scholar 

  17. F. Bogomolov and T. Pantev, Weak Hironaka theorem, Math. Res. Lett. 3 (1996), no. 3, 299–307.

    MathSciNet  MATH  Google Scholar 

  18. J-L. Brylinski, Propriétés de ramification à l’infini du groupe modulaire de Teichmüller. Ann. Sci. Ecole Norm. Sup. (4) 12 (1979), 295–333.

    MathSciNet  MATH  Google Scholar 

  19. C. Chevalley, Une démonstration d’un théorème sur les groups algébriques, Journ. Math. Pures Appl. (9) 39 (1960), 307–317.

    MathSciNet  MATH  Google Scholar 

  20. D. Cox, Toric varieties and toric resolutions,this volume.

    Google Scholar 

  21. P. Deligne, Le lemme de Gabber. In: Sém. sur les pinceaux arithmétiques: la conjecture de Mordell (Ed. L. Szpiro). Astérisque 127 (1985), 131–150.

    Google Scholar 

  22. P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. No. 36 (1969), 75–109.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Eisenbud and J. Harris, Schemes: the language of modern algebraic geometry. Wadsworth & Brooks/Cole Adv. Books Software, Pacific Grove, CA, 1992. Forthcoming edition as: Why Schemes?, Springer.

    Google Scholar 

  24. S. Encinas and O. Villamayor, A course on constructive desingularization and equivariance, this volume.

    Google Scholar 

  25. W. Fulton, Introduction to toric varieties,Annals of Math. Studies 131, Princeton Univ. Press, Princeton, NJ, 1993.

    Google Scholar 

  26. B. van Geemen and F. Oort, A compactification of a fine moduli spaces of curves, this volume.

    Google Scholar 

  27. D. Gieseker, Lectures on moduli for curves. Published for the Tata Institute of Fundamental Research, Bombay; Springer-Verlag, Berlin-New York, 1982.

    Google Scholar 

  28. W. Gröbner, Moderne algebraische Geometrie. Die idealtheoretischen Grundlagen, Springer, Wien und Innsbruck, 1949.

    Google Scholar 

  29. A. Grothendieck, Fondements de la géométrie algébrique. Extraits du Sém. Bourbaki, 1957–1962. Secrétariat Math., Paris, 1962.

    Google Scholar 

  30. A. Grothendieck, Revêtements étales et groupe fondamental, Lecture Notes in Math., 224, Springer, Berlin, 1971.

    Google Scholar 

  31. A. Grothendieck and J. P. Murre, The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, Lecture Notes in Math., 208, Springer, Berlin, 1971.

    Google Scholar 

  32. J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves. Invent. Math. 67 (1982), 43–70.

    MathSciNet  Google Scholar 

  33. J. Harris, Algebraic Geometry - a first course. Grad. texts in Math. 133 Springer-Verlag, 1992.

    Google Scholar 

  34. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Ann. of Math. (2) 79 (1964), 109–326.

    Article  MathSciNet  MATH  Google Scholar 

  35. J.-I. Igusa, Arithmetic variety of moduli for genus two. Ann. Math. 72 (1960), 612–649.

    Google Scholar 

  36. A. J. de Jong, Families of curves and alterations, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 2, 599–621.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. J. de Jong and F. Oort, On extending families of curvesJourn. Algebr. Geom. 6 (1997), 545–562

    MATH  Google Scholar 

  38. K. KaruSemistable reduction in characteristic 0 for families of surfaces and three-folds,preprint. alg-geom/9711020.

    Google Scholar 

  39. K. Karu, Minimal models and boundedness of stable varieties, preprint. math. AG/9804049.

    Google Scholar 

  40. K. Kato, Logarithmic structures of Fontaine-Illusie,in Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), 191–224, Johns Hopkins Univ. Press, Baltimore, MD.

    Google Scholar 

  41. K. Kato, Toric singularities. Amer. J. Math. 116 (1994), no. 5, 1073–1099.

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Keel and S. Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), no. 1, 193–213.

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal Embeddings I, Lecture Notes in Math., 339, Springer, Berlin, 1973.

    Google Scholar 

  44. F. F. Knudsen, The projectivity of the moduli space of stable curves, II: the stacks M g , n ,III: The line bundles on M g , n and a proof of the projectivity of M g , n in characteristic zero Math. Scand. 52 (1983). 161–199, 200–221.

    MathSciNet  Google Scholar 

  45. J. Kollár, Projectivity of complete moduli, J. Differential Geom. 32 (1990), no. 1, 235–268.

    MathSciNet  MATH  Google Scholar 

  46. S. Lichtenbaum, Curves over discrete valuation rings. Amer. Journ. Math. 90 (1968), 380–405.

    Article  MathSciNet  MATH  Google Scholar 

  47. E. Looijenga, Smooth Deligne-Mumford compactifications by means of Prym level structures. Jour. Algebr. Geom. 3 (1994), 283–293.

    MathSciNet  MATH  Google Scholar 

  48. H. Matsumura, Commutative ring theory, Translated from the Japanese by M. Reid, Second edition, Cambridge Univ. Press, Cambridge, 1989; MR 90i:13001.

    Google Scholar 

  49. S. Mochizuki, Extending Families of Curves I, II. RIMS preprints 1189 and 1188, 1998.

    Google Scholar 

  50. M. Mostafa, Die Singularitäten der Modulmannigfaltigkeiten M 9 (n) der stabilen Kurven vom Geschlecht g > 2 mit n- Teilungspunktstruktur. Journ. Reine Angew. Math., 343 (1983), 81–98.

    MathSciNet  MATH  Google Scholar 

  51. D. Mumford, The boundary of moduli problems. In: Lect. Notes Summ. Inst. Algebraic Geometry, Woods Hole 1964; 8 pp., unpublished.

    Google Scholar 

  52. D. Mumford, Lectures on curves on an algebraic surface,Princeton Univ. Press, Princeton, N.J., 1966.

    Google Scholar 

  53. D. Mumford, Curves and their Jacobians, The University of Michigan Press, Ann Arbor, Mich., 1975.

    MATH  Google Scholar 

  54. F. Oort, Good and stable reduction of abelian varieties. Manuscr. Math. 11 (1974), 171–197.

    MathSciNet  MATH  Google Scholar 

  55. F. Oort, Singularities of the moduli scheme for curves of genus three., Indag. Math. 37 (1975), 170–174.

    MathSciNet  Google Scholar 

  56. F. Oort, Singularities of coarse moduli schemes. In Séminaire d’Algèbre Paul Dubreil,29ème année (Paris,1975–1976), 61–76, Lecture Notes in Math., 586, Springer, Berlin, 1977.

    Google Scholar 

  57. F. Oort, The algebraic fundamental group. In Geometric Galois actions, 1, 67–83, Cambridge Univ. Press, Cambridge 1997.

    Google Scholar 

  58. K. Paranjape, Bogomolov-Pantev resolution - An expository account. To appear in: proceedings of the Warwick Algebraic Geometry Conference July/August 1996.

    Google Scholar 

  59. M. Pikaart and A. J. de Jong, Moduli of curves with non-abelian level structure. In: The moduli space of curves (Ed. R. Dijkgraaf, C. Faber and G. van der Geer), Proc. 1994 Conference Texel, PM 129 Birkhäuser, 1995, pp. 483–510.

    Chapter  Google Scholar 

  60. H. Popp, Moduli theory and classification theory of algebraic varieties. Lecture Notes in Math., 620, Springer, Berlin, 1977.

    Google Scholar 

  61. H. Popp, On the moduli of algebraic varietes III,Fine moduli spaces. Compos. Math. 31 (1975), 237–258.

    MathSciNet  Google Scholar 

  62. H. Popp, The singularities of moduli schemes of curves. Journ. Number theory 1 (199), 90–107.

    Google Scholar 

  63. H. E. Rauch, The singularities of the modulus space. Bull. Amer. Math. Soc. 68 (1962), 390–394.

    Article  MathSciNet  MATH  Google Scholar 

  64. M. Raynaud, Compactification du module des courbes. In Séminaire Bourbaki (23ème année, 1970/1971), Exp. No. 385,47–61. Lecture Notes in Math., 244, Springer, Berlin, 1971.

    Google Scholar 

  65. M. Raynaud and L. Gruson, Critères de platitude et de projectivité, Technique de “platification” d’un module, Invent. Math. 13 (1971), 1–89.

    MathSciNet  MATH  Google Scholar 

  66. B. Riemann, Theorie der Abel’schen Funktionen. Journ. reine angew. Math. 54 (1857), pp. 115–155.

    Article  MATH  Google Scholar 

  67. P. C. Roberts, Intersection theory and the homological conjectures in commutative algebra. Proceed. ICM, Kyoto 1990. Math. Soc. Japan & Springer-Verlag, 1991; Vol. I, pp. 361–368.

    Google Scholar 

  68. P. Samuel, Invariants arithmétiques des courbes de genre 2 (d’après Jun Ichi Igusa), in Séminaire Bourbaki, Vol. 7, (1961/62) Exp. 228, 81–93, Soc. Math. France, Paris.

    Google Scholar 

  69. M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208–222.

    Article  MathSciNet  Google Scholar 

  70. J.-P. Serre, Rigidité du foncteur de Jacobi d’echelon n > 3. Appendix of Exp. 17 of Séminaire Cartan 1960/61.

    Google Scholar 

  71. J.-P. Serre, Algèbre locale - multiplicités. Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Math., 11, Springer, Berlin, 1965.

    Google Scholar 

  72. J.-P. Serre and J. Tate, Good reduction of abelian varieties. Ann. of Math. (2) 88 (1968), 492–517. [Serre CEII, 79.]

    Article  MathSciNet  MATH  Google Scholar 

  73. G. Shimura, On the field of rationality for an abelian variety. Nagoya Math. Journ. 45, (1971), 167–178.

    MathSciNet  Google Scholar 

  74. J. Silverman, The arithmetic of elliptic curves. Grad. Texts in Math106 Springer-Verlag, 1986.

    Google Scholar 

  75. O. Villamayor, Constructiveness of Hironaka’s resolution, Arm. Sci. École Norm. Sup. (4) 22 (1989), no. 1, 1–32.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Abramovich, D., Oort, F. (2000). Alterations and Resolution of Singularities. In: Hauser, H., Lipman, J., Oort, F., Quirós, A. (eds) Resolution of Singularities. Progress in Mathematics, vol 181. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8399-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8399-3_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9550-7

  • Online ISBN: 978-3-0348-8399-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics