Skip to main content

Pyridoxine, dopa decarboxylase, and tetrahydroisoquinoline derivatives in Parkinson’s disease

  • Conference paper
Biochemistry and Molecular Biology of Vitamin B6 and PQQ-dependent Proteins

Summary

The activity of pyridoxal phosphate-dependent dopa decarboxylase in the corpus striatum of patients with Parkinson’s disease is low. However, pyridoxine which nullifies the beneficial therapeutic effects oflevodopa is contraindicated in patients with Parkinson’s disease. This problem is obviated by carbidopa, a peripheral dopa decarboxylase inhibitor which does not penetrate the blood brain barrier and hence does not affect the formation of dopamine in the brain. Administration of pyridoxine enhances the synthesis of cysteine and dopamine in the brain, and oxidation of dopamine in the presence of cysteine generates neurotoxic products such as dihydrobenzothiazines. Moreover, the situation is aggravated by the fact that the concentration of glutathione, a cysteine containing peptide, is low in the striatum of Parkinsonian patients. In addition, pyridoxal-containing tetrahydroisoquinoline derivatives, alter mitochondrial functions by inhibiting the activity of complex I. Therefore, pyridoxine should be used cautiously in patients with Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birkmayer W. and Hornykiewicz O. (1961) Wiener Klinische Wochenschrii 73, 787–788.

    CAS  Google Scholar 

  2. Brikmayer W. and Homykiewicz O. (1962) Arch. Psychiat. Nervenkr. 203, 560–574.

    Article  Google Scholar 

  3. Cotzias G.C., Van Woert M.H., and Schiffer L.M. (1967) N. Engl. J. Med. 276, 374–379.

    Article  PubMed  CAS  Google Scholar 

  4. Lovenberg W., Wiessbach H., and Udenfriend S. (1962) J. Biol. Chem. 237, 89–93.

    PubMed  CAS  Google Scholar 

  5. Lloyd K.G. and Homykiewicz O. (1972) J. Neurochem. 19, 1549–1559.

    Article  PubMed  CAS  Google Scholar 

  6. Sourkes T.L. (1966) Pharmacol. Rev. 18, 53–60.

    PubMed  CAS  Google Scholar 

  7. Lloyd K.G. and Homykiewicz O. (1970) Science 170, 1212–1213.

    Article  PubMed  CAS  Google Scholar 

  8. Kebabian J.W. and Calne D.B. (1979) Nature 277, 93–96.

    Article  PubMed  CAS  Google Scholar 

  9. Seeman P. and Grigoriadis D. (1987) Neurochem. Int. 10, 1–25.

    Article  PubMed  CAS  Google Scholar 

  10. Heubert N.D., Palfreyman M.G., and Haegele K.D. (1983) Drug. Metab. 11, 195–200.

    Google Scholar 

  11. Baldessarini R.J. and Greiner E. (1973) Biochem. Pharmacol. 22, 247–256.

    CAS  Google Scholar 

  12. Burkard W.P., Gey K.F. and Pletscher A. (1964) Arch. Biochem. Biophys. 107, 187–196.

    Article  CAS  Google Scholar 

  13. Schwartz E.D., Jordan J.C. and Ziegler, W.H. (1974) Eur. J. Clin. Pharmacol. 7, 39–45.

    Article  Google Scholar 

  14. Bender D.A. (1999) Br. J. Nutr. 81, 7–20.

    PubMed  CAS  Google Scholar 

  15. Kondo T., Higashiyama Y., Goto S., Iida T., Cho S., Iwanaga M., Mori K., Tani M. and Urata Y. (1999) Free Rad. Res. 31, 325–334.

    Article  CAS  Google Scholar 

  16. Ebadi M., Srinivasan S.K. and Baxi, M. (1996) Prog. Neurobiol. 48, 1–19.

    Article  PubMed  CAS  Google Scholar 

  17. Puka-Sundvall M., Sandberg M. and Hagberg H. (1998) Brain Res. 797, 328–332.

    Article  PubMed  CAS  Google Scholar 

  18. Shen X.Y., Zhang F. and Dryhurst G. (1997) Chem. Res. Toxicol. 10, 147–155.

    Article  CAS  Google Scholar 

  19. Ebadi M. and Govitrapong P. (1981) Drug. Develop. Res. 1, 129–136.

    CAS  Google Scholar 

  20. Ebadi M., Pfeiffer R.F., Burke W.J., Nelson F.A., Rasmussen N., and Govitrapong, P. (1998) Soc. Neurosci. Abst. 24, 1007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Ebadi, M., Govitrapong, P., Haselton, J.R. (2000). Pyridoxine, dopa decarboxylase, and tetrahydroisoquinoline derivatives in Parkinson’s disease. In: Iriarte, A., Martinez-Carrion, M., Kagan, H.M. (eds) Biochemistry and Molecular Biology of Vitamin B6 and PQQ-dependent Proteins. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8397-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8397-9_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9549-1

  • Online ISBN: 978-3-0348-8397-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics