Skip to main content

Outer Functions in yet Another Class of Analytic Functions

  • Conference paper
Complex Analysis, Operators, and Related Topics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 113))

Abstract

Let ω be a positive continuous function on (0, π] satisfying the condition

$$\begin{array}{*{20}{c}} {{{c}_{1}}{{{\left( {\frac{x}{y}} \right)}}^{\alpha }} \leqslant \frac{{\omega (y)}}{{\omega (x)}} \leqslant {{c}_{2}}{{{\left( {\frac{y}{x}} \right)}}^{\alpha }},} & {0 < x} \\ \end{array} < y \leqslant \pi ,$$

with some 0 < α < 1. For a natural number n, let Λn−1 Z ω , denote the class of functions f analytic in the unit disc D and continuous in \(\bar D\) such that the derivatives f′, ..., f (n−1) possess the same property and, moreover,

$$\begin{gathered} \left| {f^{\left( {n - 1} \right)} \left( {e^{i\left( {\theta + h} \right)} } \right) - 2f^{\left( {n - 1} \right)} \left( {e^{i\theta } } \right) + f^{\left( {n - 1} \right)} \left( {e^{i\left( {\theta - h} \right)} } \right)} \right| \leqslant c_f h \omega \left( h \right), \hfill \\ 0 < h \leqslant \pi , 0 \leqslant \theta < \pi . \hfill \\ \end{gathered}$$

The outer functions (in the sense of the Nevanlinna inner-outer factorization) belonging to Λn−1 Z ω , are completely described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. A. Shirokov, Analytic functions smooth up to the boundary, Lecture Notes in Math., 1312 (1988).

    MATH  Google Scholar 

  2. N. A. Shirokov, Outer functions from analytic Besov’s classes, Zapiski nauchn. sem. POMI, 217 (1994), 172–217,(Russian).

    MATH  Google Scholar 

  3. N. A. Shirokov, Inner functions in analytic Besov’s classes,Algebra i analiz, 8 (1996), 193–221, (Russian).

    MathSciNet  MATH  Google Scholar 

  4. K. M. Dyakonov, Equivalent norms on Lipschitz-type space of holomorphic functions, Acta Mathematica, 178 (1997), 143–167.

    Article  MathSciNet  MATH  Google Scholar 

  5. K. M. Dyakonov, The moduli of holomorphic functions in Lipschitz spaces, Michigan Math. J., 44 (1997), 139–147.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. M. Dyakonov, Besov spaces and outer functions, Michigan Math. J., 45 (1998), 143–157.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Shirokov, N.A. (2000). Outer Functions in yet Another Class of Analytic Functions. In: Havin, V.P., Nikolski, N.K. (eds) Complex Analysis, Operators, and Related Topics. Operator Theory: Advances and Applications, vol 113. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8378-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8378-8_28

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9541-5

  • Online ISBN: 978-3-0348-8378-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics