Skip to main content

Schur norms and the multivariate von Neumann inequality

  • Conference paper
Recent Advances in Operator Theory and Related Topics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 127))

Abstract

Starting from some classical counterexamples to the von Neumann inequality for several variables, we are led to especially simple examples of this phenomenon. We display three commuting 4-dimensional contractions Ck and a polynomial p(zi, z2, z3) such that

$$\parallel p({C_{1}},{C_{2}},{C_{3}})\parallel = \tfrac{6}{5}\max \{ |p({z_{1}},{z_{2}},{z_{3}})| : |{z_{k}}| \leqslant 1\} .$$
(1)

We find that this phenomenon depends on the norm of Schur multiplication by certain matrices and on the related Haagerup factorizations. It is easy to perturb the example to a triple of generic commuting contractions and so provide an answer to a question of Lewis and Wermer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Ando, On a pair of commutative contractions, Acta Sci. Math. (Szeged),24 (1963), 88–90.

    MathSciNet  MATH  Google Scholar 

  2. J. R. Angelos, C. C. Cowen and S. K. Narayan, Triangular truncation and finding the norm of a Hadamard multiplier, Linear Algebra Appl., 170 (1992), 117–136.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Bhatia, M.-D. Choi and CH. Davis, Comparing a matrix to its off-diagonal part, Operator Theory: Advances and Applications, 40 (1989), 151–164.

    MathSciNet  Google Scholar 

  4. C. C. Cowen, M. A. Dritschel and R. C. Penney, Norms of Hadamardmultipliers, SIAM J. Matrix Anal. Appl., 15 (1994), 313–320.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Crabb and A. Davie, Von Neumann’s inequality for Hilbert space operators, Bull. London Math. Soc.,7 (1975), 49–50.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Gerow and J. Holbrook, Statistical sampling and fractal distributions, The Mathematical Intelligencer, 18 (1996), 12–22.

    Article  MATH  Google Scholar 

  7. R. Guralnick, A note on commuting pairs of matrices, Lin. Mult. Alg. (LAMA), 31 (1992), 71–75.

    MathSciNet  MATH  Google Scholar 

  8. U. Haagerup, Decompositions of completely bounded maps on operator al-gebras, preprint (1984).

    Google Scholar 

  9. J. Holbrook, Inequalities of von Neumann type for small matrices, FunctionSpaces (ed. K. Jarosz), Marcel Dekker 1992, 189–193.

    Google Scholar 

  10. J. Holbrook and M. Omladia, Approximation of commuting operators, Linear Algebra and Appl., to appear.

    Google Scholar 

  11. K. Lewis and J. Wermer, On the theorems of Pick and von Neumann, Function Spaces (ed. K. Jarosz), Marcel Dekker 1992, 273–280.

    Google Scholar 

  12. B. Lotto and T. Steger, Von Neumann’s inequality for commuting diago-nalizable contractions. II, Proc. Amer. Math. Soc., 120 (1995), 897–901.

    MathSciNet  Google Scholar 

  13. E. Nelson, The distinguished boundary of the unit operator ball, Proc. Amer. Math. Soc., 12 (1961), 994–995.

    MathSciNet  MATH  Google Scholar 

  14. V. I. Paulsen, Completely Bounded Maps and Dilations, Pitman ResearchNotes in Mathematics 146, John Wiley and Sons, New York, 1986.

    MATH  Google Scholar 

  15. V. I. Paulsen, S. C. Power and R. R. Smith, Schur products and matrix completions, J. Funct. Anal.,85 (1989), 151–178.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Pisier, Similarity problems and completely bounded maps,Springer LectureNotes Math., 1618, Springer-Verlag, 1995.

    Google Scholar 

  17. N. Varopoulos, On an inequality of von Neumann and an application of themetric theory of tensor products to operator theory, J. Funct. Anal., 16 (1974), 83–100.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Von Neumann, Eine Spektraltheorie fiir allgemeine Operatoren eines unitaren Raumes, Math. Nachr., 4 (1951), 258–281.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Holbrook, J.A. (2001). Schur norms and the multivariate von Neumann inequality. In: Kérchy, L., Gohberg, I., Foias, C.I., Langer, H. (eds) Recent Advances in Operator Theory and Related Topics. Operator Theory: Advances and Applications, vol 127. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8374-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8374-0_20

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9539-2

  • Online ISBN: 978-3-0348-8374-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics