Skip to main content

Existence of travelling fronts for Nonlinear transport equations

  • Conference paper
  • 541 Accesses

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 141))

Abstract

We consider a nonlinear transport equation as a hyperbolic generalisation of the well-known reaction diffusion equation. We show the existence of strictly monotone travelling fronts for the three main types of the nonlinearity: the positive source term, the combustion law, and the bistable case. In the first case there is a whole interval of possible speeds containing its strictly positive minimum For subtangential nonlinearities we can express the minimal wave speed explicitly by a variational formula.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. G. Aronson. The asymptotic speed of propagation of a simple epidemic. In W. E. Fitzgibbon and H. F. Walker, editors, Nonlinear Diffusion, Res. Notes Math. 14, pages 1–23. Pitman, 1977.

    Google Scholar 

  2. D. G. Aronson and H. F. Weinberger. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In J. Goldstein, editor, Partial differential Equations and related Topics, Lect. Notes Math. 446, pages 5–49. Springer, 1975.

    Chapter  Google Scholar 

  3. D. G. Aronson and H. F. Weinberger. Multidimensional nonlinear diffusion arising in population genetics. Adv. Math.,30:33–76, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Berestycki and B. Larrouturou. A semilinear elliptic equation in a strip arising in a two-dimensional flame propagation model. J. Reine Angew. Math., 396:14–40, 1989.

    MathSciNet  MATH  Google Scholar 

  5. H. Berestycki and L. Nirenberg. Travelling fronts in cylinders. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 9(5):497–572, 1992.

    MathSciNet  MATH  Google Scholar 

  6. O. Diekmann. Run for your life. A note on the asymptotic speed of propagation of an epidemic. J. Differ. Equations, 33:58–73, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. A. Fisher. The advance of advantageous genes. Ann. Eugenics,7:355–369, 1937.

    Article  Google Scholar 

  8. F. Golse, P.-L. Lions, B. Perthame, and R. Sentis. Regularity of the moments of the solution of a transport equation. J. Funct. Anal., 76(1):110–125, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. P. Hadeler. Travelling fronts for correlated random walks. Can. Appl. Math. Q., 2(1):27–43, 1994.

    MathSciNet  MATH  Google Scholar 

  10. K. P. Hadeler. Reaction transport systems in biological modelling. In Mathematics inspired by biology, Lect. Notes Math. 1714. Springer, 1999.

    Google Scholar 

  11. A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piscounov. Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. Etat Moscou,Ser. Int.,Sect. A, Math. et Mecan., 1(6):1–25, 1937.

    Google Scholar 

  12. H. G. Othmer, S. R. Dunbar, and W. Alt. Models of dispersal in biological systems. J. Math. Biol., 26(3):263–298, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Schumacher. Travelling-front solutions for integro-differential equations. I. J. Reine Angew. Math., 316:54–70, 1980.

    MathSciNet  MATH  Google Scholar 

  14. H. R. Schwetlick. Travelling fronts for multidimensional nonlinear transport equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 17(4):523–550, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. R. Thieme. Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. J. reine angew. Math.,306:94–121, 1979.

    MathSciNet  MATH  Google Scholar 

  16. H. F. Weinberger. Asymptotic behavior of a model in population genetics. In J. M. Chadam, editor, Nonlinear partial differential equations and Applications, Lect. Notes Math. 648, pages 47–96. Springer, 1978.

    Chapter  Google Scholar 

  17. H. F. Weinberger. Long-time behavior of a class of biological models. SIAM J. Math. Anal., 13(3):353–396, 1982.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Schwetlick, H.R. (2001). Existence of travelling fronts for Nonlinear transport equations. In: Freistühler, H., Warnecke, G. (eds) Hyperbolic Problems: Theory, Numerics, Applications. ISNM International Series of Numerical Mathematics, vol 141. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8372-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8372-6_37

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9538-5

  • Online ISBN: 978-3-0348-8372-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics